Suppr超能文献

石墨烯超表面腔中太赫兹超快透明增强效应

Ultrafast terahertz transparency boosting in graphene meta-cavities.

作者信息

Wang Lan, An Ning, Gong Sen, Sheng Xuan, Li Yiwei, Yao Baicheng, Yu Cui, He Zezhao, Liu Qingbin, Feng Zhihong, Otsuji Taiichi, Zhang Yaxin

机构信息

Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.

Sichuan Terahertz Communication Technology Engineering Research Center, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Nanophotonics. 2022 Nov 16;11(21):4899-4907. doi: 10.1515/nanoph-2022-0511. eCollection 2022 Dec.

Abstract

As an exceptional nonlinear material, graphene offers versatile appealing properties, such as electro-optic tunability and high electromagnetic field confinement in the terahertz regime, spurring advance in ultrashort pulse formation, photodetectors and plasmonic emission. However, limited by atomic thickness, weak light-matter interaction still limits the development of integrated optical devices based on graphene. Here, an exquisitely designed meta-cavities combined with patterned graphene is used to overcome this challenge and promote THz-graphene interaction via terahertz location oscillation. By using an 800 nm pump laser, the local field-induced strong interaction allows sensitive responses to the ultrafast energy transfer from the ultrafast optical pump to graphene electron heat, enabling 46.2% enhancement of terahertz transparency. Such optical modulation of terahertz waves shows ultrafast response in delay less than 10 ps. Moreover, thanks to the nature of graphene, the device shows unique potential for electrically dynamic tuning and further bandwidth broadening.

摘要

作为一种特殊的非线性材料,石墨烯具有多种吸引人的特性,例如在太赫兹波段的电光可调性和高电磁场限制,这推动了超短脉冲形成、光电探测器和等离子体发射等方面的进展。然而,由于原子厚度的限制,弱光与物质相互作用仍然限制了基于石墨烯的集成光学器件的发展。在此,一种精心设计的超颖腔与图案化石墨烯相结合,用于克服这一挑战,并通过太赫兹局域振荡促进太赫兹与石墨烯的相互作用。通过使用800纳米的泵浦激光,局部场诱导的强相互作用使得能够对从超快光泵浦到石墨烯电子热的超快能量转移做出灵敏响应,从而使太赫兹透明度提高了46.2%。这种太赫兹波的光调制在小于10皮秒的延迟下显示出超快响应。此外,由于石墨烯的特性,该器件在电动态调谐和进一步拓宽带宽方面显示出独特的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验