Yulaev Alexander, Zhu Wenqi, Zhang Cheng, Westly Daron A, Lezec Henri J, Agrawal Amit, Aksyuk Vladimir
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Maryland Nanocenter, University of Maryland, College Park, MD 20742, USA.
ACS Photonics. 2019;6(11). doi: https://doi.org/10.1021/acsphotonics.9b01000.
Densely integrated photonic circuits enable scalable, complex processing of optical signals, including modulation, multiplexing, wavelength conversion, and detection. Directly interfacing such integrated circuits to free-space optical modes will enable novel optical functions, such as chip-scale sensing, interchip free-space interconnect and cooling, trapping, and interrogation of atoms. However, doing this within the limits of planar batch fabrication requires new approaches for bridging the large mode scale mismatch. Here, by integrating a dielectric metasurface with an extreme photonic mode converter, we create a versatile nanophotonic platform for efficient coupling to arbitrary-defined free-space radiation of 780 nm wavelength with well-controlled spatially-dependent polarization, phase, and intensity. Without leaving the chip, the high index photonic mode is converted first to a ≈ 200 μm wide, precisely collimated, linearly-polarized Gaussian beam, which is then modified by a planar, integrated, low-loss metasurface. We demonstrate high numerical aperture, diffraction limited focusing to an ≈ 473 nm spot at an ≈ 75 μm working distance, and combine it with simultaneous conversion from linear to elliptical polarization. All device components are lithographically defined and can be batch fabricated, facilitating future chip-scale low-cost hybrid photonic systems for bio-sensing, nonlinear signal processing and atomic quantum sensing, frequency references and memory.
密集集成光子电路能够对光信号进行可扩展的复杂处理,包括调制、复用、波长转换和检测。将此类集成电路直接与自由空间光学模式相连接,将实现诸如芯片级传感、芯片间自由空间互连与冷却、原子捕获和探测等新型光学功能。然而,要在平面批量制造的限制范围内做到这一点,需要新的方法来弥合大的模式尺度失配。在这里,通过将介电超表面与极端光子模式转换器集成,我们创建了一个通用的纳米光子平台,用于高效耦合到波长为780 nm的任意定义的自由空间辐射,同时具有空间相关的极化、相位和强度的良好控制。在不离开芯片的情况下,高折射率光子模式首先被转换为宽度约为200μm、精确准直、线偏振的高斯光束,然后由平面集成的低损耗超表面对其进行调制。我们展示了高数值孔径、衍射极限聚焦到工作距离约为75μm处的约473nm光斑,并将其与从线偏振到椭圆偏振的同时转换相结合。所有器件组件均通过光刻定义,并且可以批量制造,这有助于未来用于生物传感、非线性信号处理和原子量子传感、频率参考和存储的芯片级低成本混合光子系统。