Korolev Viacheslav, Sinelnik Artem D, Rybin Mikhail V, Lazarenko Petr, Kushchenko Olga M, Glukhenkaya Victoria, Kozyukhin Sergey, Zuerch Michael, Spielmann Christian, Pertsch Thomas, Staude Isabelle, Kartashov Daniil
Friedrich-Schiller University Jena, Jena, Germany.
ITMO University, St. Petersburg, Russia.
Nanophotonics. 2024 Apr 18;13(18):3411-3419. doi: 10.1515/nanoph-2023-0859. eCollection 2024 Aug.
High-order harmonic generation (HHG) in solids opens new frontiers in ultrafast spectroscopy of carrier and field dynamics in condensed matter, picometer resolution structural lattice characterization and designing compact platforms for attosecond pulse sources. Nanoscale structuring of solid surfaces provides a powerful tool for controlling the spatial characteristics and efficiency of the harmonic emission. Here we study HHG in a prototypical phase-change material GeSbTe (GST). In this material the crystal phase can be reversibly changed between a crystalline and amorphous phase by light or electric current mediated methods. We show that optical phase-switching is fully reversible and allows for dynamic control of harmonic emission. This introduces GST as new addition to materials that enable flexible metasurfaces and photonic structures that can be integrated in devices and allow for ultrafast optical control.
固体中的高次谐波产生(HHG)为凝聚态物质中载流子和场动力学的超快光谱学、皮米分辨率的结构晶格表征以及阿秒脉冲源的紧凑型平台设计开辟了新的前沿领域。固体表面的纳米级结构化提供了一种强大的工具,用于控制谐波发射的空间特性和效率。在这里,我们研究了典型的相变材料GeSbTe(GST)中的高次谐波产生。在这种材料中,晶体相可以通过光或电流介导的方法在晶相和非晶相之间可逆地改变。我们表明,光学相位切换是完全可逆的,并允许对谐波发射进行动态控制。这将GST引入到能够实现灵活超表面和光子结构的材料中,这些结构可以集成到器件中,并实现超快光学控制。