Heide Christian, Kobayashi Yuki, Johnson Amalya C, Heinz Tony F, Reis David A, Liu Fang, Ghimire Shambhu
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
Nanophotonics. 2023 Jan 6;12(2):255-261. doi: 10.1515/nanoph-2022-0595. eCollection 2023 Jan.
We report a coherent layer-by-layer build-up of high-order harmonic generation (HHG) in artificially stacked transition metal dichalcogenides (TMDC) crystals in their various stacking configurations. In the experiments, millimeter-sized single crystalline monolayers are synthesized using the gold foil-exfoliation method, followed by artificially stacking on a transparent substrate. High-order harmonics up to the 19th order are generated by the interaction with a mid-infrared (MIR) driving laser. We find that the generation is sensitive to both the number of layers and their relative orientation. For AAAA stacking configuration, both odd- and even-orders exhibit a quadratic increase in intensity as a function of the number of layers, which is a signature of constructive interference of high-harmonic emission from successive layers. Particularly, we observe some deviations from this scaling at photon energies above the bandgap, which is explained by self-absorption effects. For AB and ABAB stacking, even-order harmonics remain below the detection level, consistent with the presence of inversion symmetry. Our study confirms our capability of producing nonperturbative high-order harmonics from stacked layered materials subjected to intense MIR fields without damaging samples. Our results have implications for optimizing solid-state HHG sources at the nanoscale and developing high-harmonics as an ultrafast probe of artificially stacked layered materials. Because the HHG process is a strong-field driven process, it has the potential to probe high-momentum and energy states in the bandstructure combined with atomic-scale sensitivity in real space, making it an attractive probe of novel material structures such as the Moiré pattern.
我们报道了在人工堆叠的具有各种堆叠构型的过渡金属二硫属化物(TMDC)晶体中,高阶谐波产生(HHG)的相干逐层累积。在实验中,使用金箔剥离法合成毫米大小的单晶单层,然后人工堆叠在透明衬底上。通过与中红外(MIR)驱动激光相互作用产生高达19阶的高阶谐波。我们发现该产生对层数及其相对取向均敏感。对于AAAA堆叠构型,奇数阶和偶数阶谐波的强度均随层数呈二次方增加,这是连续层高谐波发射相长干涉的特征。特别地,我们在带隙以上的光子能量处观察到一些偏离该比例关系的情况,这可由自吸收效应来解释。对于AB和ABAB堆叠,偶数阶谐波仍低于检测水平,这与存在反演对称性一致。我们的研究证实了我们能够在不损坏样品的情况下,从经受强MIR场的堆叠层状材料中产生非微扰高阶谐波。我们的结果对于优化纳米尺度的固态HHG源以及将高谐波发展成为人工堆叠层状材料的超快探针具有重要意义。由于HHG过程是一个强场驱动过程,它有潜力结合实空间中的原子尺度灵敏度来探测能带结构中的高动量和能量态,使其成为诸如莫尔图案等新型材料结构的有吸引力的探针。