Roscam Abbing Sylvianne D C, Kuzkova Nataliia, van der Linden Roy, Campi Filippo, de Keijzer Brian, Morice Corentin, Zhang Zhuang-Yan, van der Geest Maarten L S, Kraus Peter M
Advanced Research Center for Nanolithography, Science Park 106, 1098 XG, Amsterdam, The Netherlands.
Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.
Nat Commun. 2024 Sep 27;15(1):8335. doi: 10.1038/s41467-024-52774-9.
The emission of high-order harmonics from solids under intense laser-pulse irradiation is revolutionizing our understanding of strong-field solid-light interactions, while simultaneously opening avenues towards novel, all-solid, coherent, short-wavelength table-top sources with tailored emission profiles and nanoscale light-field control. To date, broadband spectra in solids have been generated well into the extreme-ultraviolet (XUV), but the comparatively low conversion efficiency in the XUV range achieved under optimal conditions still lags behind gas-based high-harmonic generation (HHG) sources. Here, we demonstrate that two-color high-order harmonic wave mixing in a fused silica solid is more efficient than solid HHG driven by a single color. This finding has significant implications for compact XUV sources where gas-based HHG is not feasible, as solid XUV wave mixing surpasses solid-HHG in performance. Moreover, our results enable utilizing solid high-order harmonic wave mixing as a probe of structure or material dynamics of the generating solid, which will enable reducing measurement times compared to the less efficient regular solid HHG. The emission intensity scaling that follows perturbative optical wave mixing, combined with the angular separation of the emitted frequencies, makes our approach a decisive step for all-solid coherent XUV sources and for studying light-engineered materials.
在强激光脉冲辐照下,固体中高阶谐波的发射正在彻底改变我们对强场固体 - 光相互作用的理解,同时为具有定制发射轮廓和纳米级光场控制的新型全固态、相干、短波长桌面光源开辟了道路。迄今为止,固体中的宽带光谱已很好地延伸到极紫外(XUV)范围,但在最佳条件下实现的XUV范围内相对较低的转换效率仍落后于基于气体的高谐波产生(HHG)光源。在此,我们证明,在熔融石英固体中双色高阶谐波波混频比单色驱动的固体HHG更有效。这一发现对于基于气体的HHG不可行的紧凑型XUV光源具有重要意义,因为固体XUV波混频在性能上超过了固体HHG。此外,我们的结果使得能够利用固体高阶谐波波混频作为生成固体的结构或材料动力学的探针,这将比效率较低的常规固体HHG减少测量时间。遵循微扰光波混频的发射强度标度,结合发射频率的角分离,使我们的方法成为全固态相干XUV光源和研究光工程材料的决定性一步。