Suppr超能文献

亚波长丙二醇液滴离子发射的反应纳米显微镜术

Reaction nanoscopy of ion emission from sub-wavelength propanediol droplets.

作者信息

Rosenberger Philipp, Dagar Ritika, Zhang Wenbin, Majumdar Arijit, Neuhaus Marcel, Ihme Matthias, Bergues Boris, Kling Matthias F

机构信息

Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany.

Max Planck Institute of Quantum Optics, D-85748 Garching, Germany.

出版信息

Nanophotonics. 2023 Apr 6;12(10):1823-1831. doi: 10.1515/nanoph-2022-0714. eCollection 2023 May.

Abstract

Droplets provide unique opportunities for the investigation of laser-induced surface chemistry. Chemical reactions on the surface of charged droplets are ubiquitous in nature and can provide critical insight into more efficient processes for industrial chemical production. Here, we demonstrate the application of the reaction nanoscopy technique to strong-field ionized nanodroplets of propanediol (PDO). The technique's sensitivity to the near-field around the droplet allows for the in-situ characterization of the average droplet size and charge. The use of ultrashort laser pulses enables control of the amount of surface charge by the laser intensity. Moreover, we demonstrate the surface chemical sensitivity of reaction nanoscopy by comparing droplets of the isomers 1,2-PDO and 1,3-PDO in their ion emission and fragmentation channels. Referencing the ion yields to gas-phase data, we find an enhanced production of methyl cations from droplets of the 1,2-PDO isomer. Density functional theory simulations support that this enhancement is due to the alignment of 1,2-PDO molecules on the surface. The results pave the way towards spatio-temporal observations of charge dynamics and surface reactions on droplets.

摘要

液滴为研究激光诱导的表面化学提供了独特的机会。带电液滴表面的化学反应在自然界中普遍存在,并且能够为工业化学品生产中更高效的过程提供关键见解。在此,我们展示了反应纳米显微镜技术在丙二醇(PDO)强场电离纳米液滴中的应用。该技术对液滴周围近场的敏感性使得能够原位表征平均液滴尺寸和电荷。使用超短激光脉冲可通过激光强度控制表面电荷量。此外,我们通过比较异构体1,2 - PDO和1,3 - PDO的液滴在离子发射和碎片化通道方面的情况,展示了反应纳米显微镜的表面化学敏感性。将离子产率与气相数据进行对比,我们发现1,2 - PDO异构体的液滴中甲基阳离子的生成有所增加。密度泛函理论模拟表明,这种增加是由于1,2 - PDO分子在表面的排列所致。这些结果为液滴上电荷动力学和表面反应的时空观测铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce97/11501279/69384df090db/j_nanoph-2022-0714_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验