Rosenberger Philipp, Dagar Ritika, Zhang Wenbin, Sousa-Castillo Ana, Neuhaus Marcel, Cortes Emiliano, Maier Stefan A, Costa-Vera Cesar, Kling Matthias F, Bergues Boris
Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany.
Max Planck Institute of Quantum Optics, D-85748 Garching, Germany.
Eur Phys J D At Mol Opt Phys. 2022;76(6):109. doi: 10.1140/epjd/s10053-022-00430-6. Epub 2022 Jun 27.
We investigate the strong-field ion emission from the surface of isolated silica nanoparticles aerosolized from an alcoholic solution, and demonstrate the applicability of the recently reported near-field imaging at 720 nm [Rupp et al., Nat. Comm., 10(1):4655, 2019] to longer wavelength (2 m) and polarizations with arbitrary ellipticity. Based on the experimental observations, we discuss the validity of a previously introduced semi-classical model, which is based on near-field driven charge generation by a Monte-Carlo approach and classical propagation. We furthermore clarify the role of the solvent in the surface composition of the nanoparticles in the interaction region. We find that upon injection of the nanoparticles into the vacuum, the alcoholic solvent evaporates on millisecond time scales, and that the generated ions originate predominantly from covalent bonds with the silica surface rather than from physisorbed solvent molecules. These findings have important implications for the development of future theoretical models of the strong-field ion emission from silica nanoparticles, and the application of near-field imaging and reaction dynamics of functional groups on isolated nanoparticles.
The online version contains supplementary material available at 10.1140/epjd/s10053-022-00430-6.
我们研究了从酒精溶液中雾化的孤立二氧化硅纳米颗粒表面的强场离子发射,并证明了最近报道的720纳米近场成像[鲁普等人,《自然通讯》,10(1):4655,2019]适用于更长波长(2微米)和任意椭圆率的偏振。基于实验观察结果,我们讨论了先前引入的半经典模型的有效性,该模型基于蒙特卡罗方法和经典传播的近场驱动电荷产生。我们还阐明了溶剂在相互作用区域纳米颗粒表面组成中的作用。我们发现,将纳米颗粒注入真空后,酒精溶剂在毫秒时间尺度上蒸发,并且产生的离子主要源自与二氧化硅表面的共价键,而非物理吸附的溶剂分子。这些发现对未来二氧化硅纳米颗粒强场离子发射理论模型的发展,以及孤立纳米颗粒上近场成像和官能团反应动力学的应用具有重要意义。
在线版本包含可在10.1140/epjd/s10053-022-00430-6获取的补充材料。