Suppr超能文献

光子(计算)存储器:用于数据存储和计算的可调谐纳米光子学。

Photonic (computational) memories: tunable nanophotonics for data storage and computing.

作者信息

Lian Chuanyu, Vagionas Christos, Alexoudi Theonitsa, Pleros Nikos, Youngblood Nathan, Ríos Carlos

机构信息

Department of Materials Science & Engineering, University of Maryland, College Park, MD, USA.

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

出版信息

Nanophotonics. 2022 May 16;11(17):3823-3854. doi: 10.1515/nanoph-2022-0089. eCollection 2022 Sep.

Abstract

The exponential growth of information stored in data centers and computational power required for various data-intensive applications, such as deep learning and AI, call for new strategies to improve or move beyond the traditional von Neumann architecture. Recent achievements in information storage and computation in the optical domain, enabling energy-efficient, fast, and high-bandwidth data processing, show great potential for photonics to overcome the von Neumann bottleneck and reduce the energy wasted to Joule heating. Optically readable memories are fundamental in this process, and while light-based storage has traditionally (and commercially) employed free-space optics, recent developments in photonic integrated circuits (PICs) and optical nano-materials have opened the doors to new opportunities on-chip. Photonic memories have yet to rival their electronic digital counterparts in storage density; however, their inherent analog nature and ultrahigh bandwidth make them ideal for unconventional computing strategies. Here, we review emerging nanophotonic devices that possess memory capabilities by elaborating on their tunable mechanisms and evaluating them in terms of scalability and device performance. Moreover, we discuss the progress on large-scale architectures for photonic memory arrays and optical computing primarily based on memory performance.

摘要

数据中心存储的信息呈指数级增长,以及深度学习和人工智能等各种数据密集型应用所需的计算能力,都需要新的策略来改进或超越传统的冯·诺依曼架构。光学领域在信息存储和计算方面的最新成果,实现了高能效、快速且高带宽的数据处理,显示出光子学在克服冯·诺依曼瓶颈以及减少因焦耳热而浪费的能量方面具有巨大潜力。光学可读存储器是这一过程的基础,虽然传统上(以及商业上)基于光的存储采用自由空间光学,但光子集成电路(PIC)和光学纳米材料的最新进展为片上的新机遇打开了大门。光子存储器在存储密度方面尚未能与电子数字存储器相媲美;然而,它们固有的模拟特性和超高带宽使其成为非常规计算策略的理想选择。在此,我们通过阐述其可调谐机制并从可扩展性和器件性能方面对其进行评估,来回顾具有存储能力的新兴纳米光子器件。此外,我们主要基于存储性能来讨论光子存储阵列和光学计算的大规模架构方面的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e1/11501226/e1ce24b23282/j_nanoph-2022-0089_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验