Sun Kai, Xiao Wei, Wheeler Callum, Simeoni Mirko, Urbani Alessandro, Gaspari Matteo, Mengali Sandro, de Groot C H Kees, Muskens Otto L
Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, UK.
Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, UK.
Nanophotonics. 2022 Apr 25;11(17):4101-4114. doi: 10.1515/nanoph-2022-0020. eCollection 2022 Sep.
Smart radiative cooling devices based on thermochromic materials such as vanadium dioxide (VO) are of practical interest for temperature regulation and artificial homeostasis, i.e., maintaining stable equilibrium conditions for survival, both in terrestrial and space applications. In traditional solar reflector configurations, solar absorption in the VO layer is a performance limiting factor due to the multiple reflections of sunlight in the stack. Here, we demonstrate a visually transparent, smart radiator panel with reduced solar absorption. An Al-doped ZnO transparent conducting oxide layer acts as a frequency selective infrared back-reflector with high transmission of solar radiation. In this study we make use of high-quality VO thin films deposited using atomic layer deposition and optimized annealing process. Patterning of the VO layer into a metasurface results in a further reduction of the solar absorption parameter to around 0.3, while exhibiting a thermal emissivity contrast Δ of 0.26 by exploiting plasmonic enhancement effects. The VO metasurface provides a visual spectrum transmission of up to 62%, which is of interest for a range of applications requiring visual transparency. The transparent smart metasurface thermal emitter offers a new approach for thermal management in both space and terrestrial radiative cooling scenarios.
基于二氧化钒(VO)等热致变色材料的智能辐射冷却装置对于温度调节和人工稳态具有实际意义,即在地面和太空应用中维持稳定的平衡条件以确保生存。在传统的太阳能反射器配置中,由于太阳光在堆叠结构中的多次反射,VO层中的太阳能吸收是一个性能限制因素。在此,我们展示了一种具有降低太阳能吸收的视觉透明智能散热器面板。掺铝氧化锌透明导电氧化物层作为频率选择性红外背反射器,具有高太阳能辐射透射率。在本研究中,我们利用原子层沉积和优化的退火工艺制备了高质量的VO薄膜。将VO层图案化为超表面可使太阳能吸收参数进一步降低至约0.3,同时通过利用等离子体增强效应表现出0.26的热发射率对比度。VO超表面提供高达62%的可见光谱透射率,这对于一系列需要视觉透明性的应用具有重要意义。这种透明智能超表面热发射器为空间和地面辐射冷却场景中的热管理提供了一种新方法。