Suppr超能文献

深度学习实现的快照计算光谱学。

Snapshot computational spectroscopy enabled by deep learning.

作者信息

Zhang Haomin, Li Quan, Zhao Huijuan, Wang Bowen, Gong Jiaxing, Gao Li

机构信息

School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, China.

School of Science, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, China.

出版信息

Nanophotonics. 2024 Aug 29;13(22):4159-4168. doi: 10.1515/nanoph-2024-0328. eCollection 2024 Sep.

Abstract

Spectroscopy is a technique that analyzes the interaction between matter and light as a function of wavelength. It is the most convenient method for obtaining qualitative and quantitative information about an unknown sample with reasonable accuracy. However, traditional spectroscopy is reliant on bulky and expensive spectrometers, while emerging applications of portable, low-cost and lightweight sensing and imaging necessitate the development of miniaturized spectrometers. In this study, we have developed a computational spectroscopy method that can provide single-shot operation, sub-nanometer spectral resolution, and direct materials characterization. This method is enabled by a metasurface integrated computational spectrometer and deep learning algorithms. The identification of critical parameters of optical cavities and chemical solutions is demonstrated through the application of the method, with an average spectral reconstruction accuracy of 0.4 nm and an actual measurement error of 0.32 nm. The mean square errors for the characterization of cavity length and solution concentration are 0.53 % and 1.21 %, respectively. Consequently, computational spectroscopy can achieve the same level of spectral accuracy as traditional spectroscopy while providing convenient, rapid material characterization in a variety of scenarios.

摘要

光谱学是一种分析物质与光之间相互作用随波长变化的技术。它是获取关于未知样品的定性和定量信息且具有合理准确度的最便捷方法。然而,传统光谱学依赖于体积庞大且昂贵的光谱仪,而便携式、低成本和轻量化传感与成像的新兴应用需要开发小型化光谱仪。在本研究中,我们开发了一种计算光谱学方法,该方法可提供单次操作、亚纳米级光谱分辨率以及直接的材料表征。此方法由超表面集成计算光谱仪和深度学习算法实现。通过该方法的应用,展示了对光学腔和化学溶液关键参数的识别,平均光谱重建精度为0.4纳米,实际测量误差为0.32纳米。腔长和溶液浓度表征的均方误差分别为0.53%和1.21%。因此,计算光谱学在各种场景下能够实现与传统光谱学相同水平的光谱准确度,同时提供便捷、快速的材料表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f2/11501049/b604b79359f4/j_nanoph-2024-0328_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验