Suppr超能文献

高通量分子成像通过深度学习赋能的拉曼光谱。

High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy.

机构信息

Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, U.K.

Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.

出版信息

Anal Chem. 2021 Dec 7;93(48):15850-15860. doi: 10.1021/acs.analchem.1c02178. Epub 2021 Nov 19.

Abstract

Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2-4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40-90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.

摘要

拉曼光谱能够实现无损、无标记的成像,具有前所未有的分子对比度,但由于数据采集缓慢,限制了高通量成像应用。在这里,我们通过深度学习实现了拉曼光谱的高通量分子成像的综合框架,称为 DeepeR,它是在一个包含超过 150 万光谱(总采集时间为 400 小时)的超光谱拉曼图像大数据集上进行训练的。我们首先通过深度学习对低信噪比的拉曼分子特征进行去噪和重建,均方误差比常见的拉曼滤波方法提高了 10 倍。接下来,我们开发了一种神经网络,用于对超光谱拉曼图像进行稳健的 2-4 倍空间超分辨率处理,同时保留分子细胞信息。通过结合这些方法,我们实现了高达 40-90 倍的拉曼成像加速,能够在不到 1 分钟的时间内实现高质量的细胞成像,具有高分辨率和高信噪比。我们进一步证明了 160 倍的拉曼成像加速,这对于较低分辨率的成像应用(如大面积的快速筛选或光谱病理学)非常有用。最后,我们应用迁移学习将 DeepeR 从细胞扩展到组织尺度的成像。DeepeR 为一系列高通量拉曼光谱和分子成像应用在生物医学领域的应用提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e04/9286315/f9de4bd78f62/ac1c02178_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验