Suppr超能文献

基于高阶复合相位调制的高效宽带非对称自旋轨道相互作用。

High-efficiency and broadband asymmetric spin-orbit interaction based on high-order composite phase modulation.

作者信息

Ou Yuzhong, Chen Yan, Zhang Fei, Pu Mingbo, Jiang Mengna, Xu Mingfeng, Guo Yinghui, Feng Chaolong, Gao Ping, Luo Xiangang

机构信息

National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chengdu 610209, China.

College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Nanophotonics. 2024 Sep 6;13(22):4203-4210. doi: 10.1515/nanoph-2024-0344. eCollection 2024 Sep.

Abstract

Asymmetric spin-orbit interaction (ASOI) breaks the limitations in conjugate symmetry of traditional geometric phase metasurfaces, bringing new opportunities for various applications such as spin-decoupled holography, imaging, and complex light field manipulation. Since anisotropy is a requirement for spin-orbit interactions, existing ASOI mainly relies on meta-atom with C1 and C2 symmetries, which usually suffer from an efficiency decrease caused by the propagation phase control through the structural size. Here, we demonstrate for the first time that ASOI can be realized in meta-atoms with rotational symmetry ≥3 by combining the generalized geometric phase with the propagation phase. Utilizing an all-metallic configuration, the average diffraction efficiency of the spin-decoupled beam deflector based on C3 meta-atoms reaches ∼84 % in the wavelength range of 9.3-10.6 μm, which is much higher than that of the commonly used C2 meta-atoms with the same period and height. This is because the anisotropy of the C3 metasurface originates from the lattice coupling effect, which is relatively insensitive to the propagation phase control through the meta-atom size. A spin-decoupled beam deflector and hologram meta-device were experimentally demonstrated and performed well over a broadband wavelength range. This work opens a new route for ASOI, which is significant for realizing high-efficiency and broadband spin-decoupled meta-devices.

摘要

非对称自旋轨道相互作用(ASOI)打破了传统几何相位超表面共轭对称性的限制,为自旋解耦全息术、成像和复杂光场操纵等各种应用带来了新机遇。由于各向异性是自旋轨道相互作用的必要条件,现有的ASOI主要依赖具有C1和C2对称性的元原子,这类元原子通常会因通过结构尺寸进行传播相位控制而导致效率降低。在此,我们首次证明通过将广义几何相位与传播相位相结合,可在旋转对称性≥3的元原子中实现ASOI。利用全金属结构,基于C3元原子的自旋解耦光束偏转器在9.3 - 10.6μm波长范围内的平均衍射效率达到约84%,远高于具有相同周期和高度的常用C2元原子。这是因为C3超表面的各向异性源于晶格耦合效应,该效应对于通过元原子尺寸进行的传播相位控制相对不敏感。实验展示了一个自旋解耦光束偏转器和全息元器件,并在宽带波长范围内表现良好。这项工作为ASOI开辟了一条新途径,对于实现高效和宽带自旋解耦元器件具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d656/11501051/4d5920fd4296/j_nanoph-2024-0344_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验