Li Hongmei, Yuan Yuliang, Xu Qianjie, Liang Guangzhong, Hu Zuhai, Li Xiaosheng, Zhang Wei, Lei Haike
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, China.
Front Immunol. 2024 Nov 20;15:1487078. doi: 10.3389/fimmu.2024.1487078. eCollection 2024.
In China, lung cancer ranks first in both incidence and mortality among all malignant tumors. Non-small cell lung cancer (NSCLC) constitutes the vast majority of cases, accounting for 80% to 85% of cases. Immune checkpoint inhibitors (ICIs), either as monotherapies or combined with other treatments, have become the standard first-line therapy for NSCLC patients. This study aimed to establish a nomogram model for NSCLC patients receiving immunotherapy incorporating demographic information, clinical characteristics, and laboratory indicators.
From January 1, 2019, to December 31, 2022, a prospective longitudinal cohort study involving 1321 patients with NSCLC undergoing immunotherapy was conducted at Chongqing University Cancer Hospital. Clinical and pathological characteristics, as well as follow-up data, were collected and analyzed. To explore prognostic factors affecting overall survival (OS), a Cox regression model was used to test the significance of various variables. Independent prognostic indicators were identified through multivariate analysis and then used to construct a nomogram prediction model. To validate the accuracy and practicality of this model, the concordance index (C-index), area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) were used to assess the predictive performance of the nomogram.
In the final model, 11 variables from the training cohort were identified as independent risk factors for patients with NSCLC: age, KPS score, BMI, diabetes, targeted therapy, Hb, WBC, LDH, CRP, PLR, and LMR. The C-index for OS in the training cohort was 0.717 (95% CI, 0.689-0.745) and 0.704 (95% CI, 0.660-0.750) in the validation cohort. Calibration curves for survival probability showed good concordance between the nomogram predictions and actual observations. The AUCs for 1-year, 2-year, and 3-year OS in the training cohort were 0.724, 0.764, and 0.79, respectively, and 0.725, 0.736, and 0.818 in the validation cohort. DCA demonstrated that the nomogram model had a greater overall net benefit.
A prognostic model for OS in NSCLC patients receiving immunotherapy was established, providing a simple and reliable tool for predicting patient survival (https://icisnsclc.shinyapps.io/DynNomapp/). This model offers valuable guidance for clinicians in making treatment decisions and recommendations.
在中国,肺癌的发病率和死亡率在所有恶性肿瘤中均位居首位。非小细胞肺癌(NSCLC)占所有病例的绝大多数,占80%至85%。免疫检查点抑制剂(ICI)无论是作为单一疗法还是与其他治疗联合使用,都已成为NSCLC患者的标准一线治疗方法。本研究旨在为接受免疫治疗的NSCLC患者建立一个包含人口统计学信息、临床特征和实验室指标的列线图模型。
2019年1月1日至2022年12月31日,重庆大学附属肿瘤医院对1321例接受免疫治疗的NSCLC患者进行了一项前瞻性纵向队列研究。收集并分析了临床和病理特征以及随访数据。为了探索影响总生存期(OS)的预后因素,使用Cox回归模型检验各种变量的显著性。通过多变量分析确定独立预后指标,然后用于构建列线图预测模型。为了验证该模型的准确性和实用性,使用一致性指数(C指数)、受试者操作特征曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)来评估列线图的预测性能。
在最终模型中,训练队列中的11个变量被确定为NSCLC患者的独立危险因素:年龄、KPS评分、BMI、糖尿病、靶向治疗、血红蛋白(Hb)、白细胞(WBC)、乳酸脱氢酶(LDH)、C反应蛋白(CRP)、血小板淋巴细胞比值(PLR)和淋巴细胞单核细胞比值(LMR)。训练队列中OS的C指数为0.717(95%CI,0.689 - 0.745),验证队列中为0.704(95%CI,0.660 - 0.750)。生存概率的校准曲线显示列线图预测与实际观察结果之间具有良好的一致性。训练队列中1年、2年和3年OS的AUC分别为0.724、0.764和0.79,验证队列中分别为0.725、0.736和0.818。DCA表明列线图模型具有更大的总体净效益。
建立了接受免疫治疗的NSCLC患者OS的预后模型,为预测患者生存提供了一个简单可靠的工具(https://icisnsclc.shinyapps.io/DynNomapp/)。该模型为临床医生做出治疗决策和建议提供了有价值的指导。