Liu Yansheng, Niño Ortí Miguel Angel, Luo Feng, Wannemacher Reinhold
IMDEA Nanoscience, calle Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
School of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
Nanophotonics. 2022 Jun 10;11(14):3247-3256. doi: 10.1515/nanoph-2021-0778. eCollection 2022 Jul.
In artificial structures of molecular or quantum dot emitters in contact with single-layer graphene (SLG) Förster-type resonant energy transfer (FRET) can occur unconditionally due to the gapless band structure of SLG. A significant breakthrough for applications, however, would be the electrical modulation of FRET between arbitrary FRET pairs, using the SLG to control this process and taking advantage of the particular band structure and the monatomic thickness of SLG, far below the typical Förster radius of a few nanometers. For a proof of concept, we have therefore designed a Sandwich device where the SLG was transferred onto holey SiN membranes and organic molecules were deposited on either side of the SLG. The relative photoluminescence (PL) intensities of donor and acceptor molecules changed continuously and reversibly with the external bias voltage, and a variation of about 6% of FRET efficiency has been achieved. We ascribe the origin of the electrical modulation of FRET to important doping-dependent nonlocal optical effects in the near field of SLG in the visible range.
在与单层石墨烯(SLG)接触的分子或量子点发射器的人工结构中,由于SLG的无隙能带结构,福斯特型共振能量转移(FRET)可以无条件地发生。然而,对于应用来说,一个重大突破将是使用SLG来控制这一过程,并利用SLG特殊的能带结构和单原子厚度(远低于典型的几纳米福斯特半径),对任意FRET对之间的FRET进行电调制。因此,为了进行概念验证,我们设计了一种三明治器件,将SLG转移到多孔氮化硅膜上,并在SLG的两侧沉积有机分子。供体和受体分子的相对光致发光(PL)强度随外部偏置电压连续且可逆地变化,并且实现了约6%的FRET效率变化。我们将FRET的电调制起源归因于可见光范围内SLG近场中重要的掺杂相关非局部光学效应。