Suppr超能文献

基于机器学习和放射组学的骨肉瘤和软骨肉瘤可解释分型预测模型的开发:一项多中心回顾性研究

Development of the interpretable typing prediction model for osteosarcoma and chondrosarcoma based on machine learning and radiomics: a multicenter retrospective study.

作者信息

Long Qing-Yuan, Wang Feng-Yan, Hu Yue, Gao Bo, Zhang Chuan, Ban Bo-Heng, Tian Xiao-Bin

机构信息

The Second Affiliated Hospital of Guizhou Medical University, Kaili, China.

School of Clinical Medicine, Guizhou Medical University, Guiyang, China.

出版信息

Front Med (Lausanne). 2024 Nov 20;11:1497309. doi: 10.3389/fmed.2024.1497309. eCollection 2024.

Abstract

BACKGROUND

Osteosarcoma and chondrosarcoma are common malignant bone tumors, and accurate differentiation between these two tumors is crucial for treatment strategies and prognosis assessment. However, traditional radiological methods face diagnostic challenges due to the similarity in imaging between the two.

METHODS

Clinical CT images and pathological data of 76 patients confirmed by pathology from January 2018 to January 2024 were retrospectively collected from Guizhou Medical University Affiliated Hospital and Guizhou Medical University Second Affiliated Hospital. A total of 788 radiomic features, including shape, texture, and first-order statistics, were extracted in this study. Six machine learning models, including Random Forest (RF), Extra Trees (ET), AdaBoost, Gradient Boosting Tree (GB), Linear Discriminant Analysis (LDA), and XGBoost (XGB), were trained and validated. Additionally, the importance of features and the interpretability of the models were evaluated through SHAP value analysis.

RESULTS

The RF model performed best in distinguishing between these two tumor types, with an AUC value close to perfect at 1.00. The ET and AdaBoost models also demonstrated high performance, with AUC values of 0.98 and 0.93, respectively. SHAP value analysis revealed significant influences of wavelet-transformed GLCM and First Order features on model predictions, further enhancing diagnostic interpretability.

CONCLUSION

This study confirms the effectiveness of combining machine learning with radiomic features in improving the accuracy and interpretability of osteosarcoma and chondrosarcoma diagnosis. The excellent performance of the RF model is particularly suitable for complex imaging data processing, providing valuable insights for the future.

摘要

背景

骨肉瘤和软骨肉瘤是常见的恶性骨肿瘤,准确区分这两种肿瘤对于治疗策略和预后评估至关重要。然而,由于两者在影像学上的相似性,传统的放射学方法面临诊断挑战。

方法

回顾性收集2018年1月至2024年1月贵州医科大学附属医院和贵州医科大学第二附属医院76例经病理确诊患者的临床CT图像和病理数据。本研究共提取了788个放射组学特征,包括形状、纹理和一阶统计量。训练并验证了六种机器学习模型,包括随机森林(RF)、极端随机树(ET)、自适应增强(AdaBoost)、梯度提升树(GB)、线性判别分析(LDA)和XGBoost(XGB)。此外,通过SHAP值分析评估特征的重要性和模型的可解释性。

结果

RF模型在区分这两种肿瘤类型方面表现最佳,AUC值接近完美,为1.00。ET和AdaBoost模型也表现出高性能,AUC值分别为0.98和0.93。SHAP值分析显示小波变换后的灰度共生矩阵(GLCM)和一阶特征对模型预测有显著影响,进一步增强了诊断的可解释性。

结论

本研究证实了将机器学习与放射组学特征相结合在提高骨肉瘤和软骨肉瘤诊断准确性和可解释性方面的有效性。RF模型的优异性能特别适用于复杂的成像数据处理,为未来提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f052/11614641/7bfe441e51c8/fmed-11-1497309-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验