Kim San, Jeong Tae-In, Park Jongkyoon, Ciappina Marcelo F, Kim Seungchul
Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan 46241, South Korea.
Engineering Research Center for Color-modulated Extra-sensory Perception Technology, 2 Busandaehak-ro 63beon-gil, Busan 46241, South Korea.
Nanophotonics. 2022 Mar 21;11(11):2393-2431. doi: 10.1515/nanoph-2021-0694. eCollection 2022 Jun.
Surface plasmons, the collective oscillation of electrons, enable the manipulation of optical fields with unprecedented spatial and time resolutions. They are the workhorse of a large set of applications, such as chemical/biological sensors or Raman scattering spectroscopy, to name only a few. In particular, the ultrafast optical response configures one of the most fundamental characteristics of surface plasmons. Thus, the rich physics about photon-electron interactions could be retrieved and studied in detail. The associated plasmon-enhanced electric fields, generated by focusing the surface plasmons far beyond the diffraction limit, allow reaching the strong field regime with relatively low input laser intensities. This is in clear contrast to conventional optical methods, where their intrinsic limitations demand the use of large and costly laser amplifiers, to attain high electric fields, able to manipulate the electron dynamics in the non-linear regime. Moreover, the coherent plasmonic field excited by the optical field inherits an ultrahigh precision that could be properly exploited in, for instance, ultraprecision spectroscopy. In this review, we summarize the research achievements and developments in ultrafast plasmonics over the last decade. We particularly emphasize the strong-field physics aspects and the ultraprecision spectroscopy using optical frequency combs.
表面等离子体激元,即电子的集体振荡,能够以前所未有的空间和时间分辨率操控光场。它们是众多应用的主力军,比如化学/生物传感器或拉曼散射光谱仪等等。特别地,超快光学响应构成了表面等离子体激元最基本的特性之一。因此,可以详细地检索和研究有关光子 - 电子相互作用的丰富物理现象。通过将表面等离子体激元聚焦到远超过衍射极限而产生的相关等离子体增强电场,能够以相对较低的输入激光强度达到强场状态。这与传统光学方法形成鲜明对比,在传统光学方法中,其固有限制要求使用大型且昂贵的激光放大器才能获得能够在非线性状态下操控电子动力学的高电场。此外,由光场激发的相干等离子体激元场具有超高精度,例如在超精密光谱学中可以得到恰当利用。在这篇综述中,我们总结了过去十年超快等离子体激元学的研究成果和进展。我们特别强调强场物理方面以及使用光学频率梳的超精密光谱学。