Yang Yujia, Turchetti Marco, Vasireddy Praful, Putnam William P, Karnbach Oliver, Nardi Alberto, Kärtner Franz X, Berggren Karl K, Keathley Phillip D
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA.
Nat Commun. 2020 Jul 8;11(1):3407. doi: 10.1038/s41467-020-17250-0.
Ultrafast, high-intensity light-matter interactions lead to optical-field-driven photocurrents with an attosecond-level temporal response. These photocurrents can be used to detect the carrier-envelope-phase (CEP) of short optical pulses, and enable optical-frequency, petahertz (PHz) electronics for high-speed information processing. Despite recent reports on optical-field-driven photocurrents in various nanoscale solid-state materials, little has been done in examining the large-scale electronic integration of these devices to improve their functionality and compactness. In this work, we demonstrate enhanced, on-chip CEP detection via optical-field-driven photocurrents in a monolithic array of electrically-connected plasmonic bow-tie nanoantennas that are contained within an area of hundreds of square microns. The technique is scalable and could potentially be used for shot-to-shot CEP tagging applications requiring orders-of-magnitude less pulse energy compared to alternative ionization-based techniques. Our results open avenues for compact time-domain, on-chip CEP detection, and inform the development of integrated circuits for PHz electronics as well as integrated platforms for attosecond and strong-field science.
超快、高强度的光与物质相互作用会产生具有阿秒级时间响应的光场驱动光电流。这些光电流可用于检测短光脉冲的载波包络相位(CEP),并实现用于高速信息处理的光频、太赫兹(PHz)电子学。尽管最近有关于各种纳米级固态材料中光场驱动光电流的报道,但在研究这些器件的大规模电子集成以提高其功能和紧凑性方面却做得很少。在这项工作中,我们展示了通过光场驱动的光电流在数百平方微米面积内的电连接等离子体蝴蝶结纳米天线的单片阵列中实现增强的片上CEP检测。该技术具有可扩展性,与基于替代电离的技术相比,有可能用于需要少几个数量级脉冲能量的逐次CEP标记应用。我们的结果为紧凑的时域片上CEP检测开辟了道路,并为PHz电子学的集成电路以及阿秒和强场科学的集成平台的发展提供了信息。