Suppr超能文献

超大虚拟筛选:药物设计中的定义、最新进展与挑战

Ultra-Large Virtual Screening: Definition, Recent Advances, and Challenges in Drug Design.

作者信息

Corrêa Veríssimo Gabriel, Salgado Ferreira Rafaela, Gonçalves Maltarollo Vinícius

机构信息

Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil.

Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil.

出版信息

Mol Inform. 2025 Jan;44(1):e202400305. doi: 10.1002/minf.202400305. Epub 2024 Dec 5.

Abstract

Virtual screening (VS) in drug design employs computational methodologies to systematically rank molecules from a virtual compound library based on predicted features related to their biological activities or chemical properties. The recent expansion in commercially accessible compound libraries and the advancements in artificial intelligence (AI) and computational power - including enhanced central processing units (CPUs), graphics processing units (GPUs), high-performance computing (HPC), and cloud computing - have significantly expanded our capacity to screen libraries containing over 10 molecules. Herein, we review the concept of ultra-large virtual screening (ULVS), focusing on the various algorithms and methodologies employed for virtual screening at this scale. In this context, we present the software utilized, applications, and results of different approaches, such as brute force docking, reaction-based docking approaches, machine learning (ML) strategies applied to docking or other VS methods, and similarity/pharmacophore search-based techniques. These examples represent a paradigm shift in the drug discovery process, demonstrating not only the feasibility of billion-scale compound screening but also their potential to identify hit candidates and increase the structural diversity of novel compounds with biological activities.

摘要

药物设计中的虚拟筛选(VS)采用计算方法,根据与分子生物活性或化学性质相关的预测特征,对虚拟化合物库中的分子进行系统排序。近年来,商业上可获取的化合物库不断扩大,人工智能(AI)和计算能力也取得了进步,包括增强的中央处理器(CPU)、图形处理器(GPU)、高性能计算(HPC)和云计算,这显著扩展了我们筛选包含超过10个分子的文库的能力。在此,我们回顾超大型虚拟筛选(ULVS)的概念,重点关注在此规模下用于虚拟筛选的各种算法和方法。在这种背景下,我们介绍了所使用的软件、不同方法的应用和结果,如强力对接、基于反应的对接方法、应用于对接或其他虚拟筛选方法的机器学习(ML)策略,以及基于相似性/药效团搜索的技术。这些例子代表了药物发现过程中的范式转变,不仅证明了十亿规模化合物筛选的可行性,还展示了它们识别命中候选物以及增加具有生物活性的新型化合物结构多样性的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验