Suppr超能文献

探索阻塞性睡眠呼吸暂停的复杂性:机器学习在个体因素诊断和预测能力方面的发现。

Exploring the complexity of obstructive sleep apnea: findings from machine learning on diagnosis and predictive capacity of individual factors.

作者信息

Russo Simone, Martini Agnese, Luzzi Valeria, Garbarino Sergio, Pietrafesa Emma, Polimeni Antonella

机构信息

Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078, Rome, Italy.

Department of Oral and Maxillofacial Sciences, UOC Paediatric Dentistry, Sapienza University of Rome, Rome, Italy.

出版信息

Sleep Breath. 2024 Dec 5;29(1):49. doi: 10.1007/s11325-024-03191-1.

Abstract

PURPOSE

Obstructive sleep apnoea (OSA) is a prevalent sleep disorder characterized by pharyngeal airway collapse during sleep, leading to intermittent hypoxia, intrathoracic pressure swings, and sleep fragmentation. OSA is associated with various comorbidities and risk factors, contributing to its substantial economic and social burden. Machine learning (ML) techniques offer promise in predicting OSA severity and understanding its complex pathogenesis. This study aims to compare the accuracy of different ML techniques in predicting OSA severity and identify key associated factors contributing to OSA.

METHODS

Adult patients suspected of OSA underwent clinical assessments and polysomnography. Demographic, anthropometric and clinical data were collected. Five supervised ML models (logistic regression, decision tree, random forest, extreme gradient boosting, support vector machine) were employed, optimized through grid search and cross-validation.

RESULTS

ML models exhibited varied performance across OSA severity levels. SVM demonstrated the highest accuracy for mild OSA, XGBoost for moderate OSA, and random forest for severe OSA. Logistic regression showed the highest AUC for moderate and severe OSA. Anthropometric measures, gender, and hypertension were significant predictors of OSA severity.

CONCLUSION

ML models offer valuable insights into predicting OSA severity and identifying associated factors. Our findings support the relevant potential clinical utility of ML in OSA management, although further validation and refinement are warranted.

摘要

目的

阻塞性睡眠呼吸暂停(OSA)是一种常见的睡眠障碍,其特征是睡眠期间咽部气道塌陷,导致间歇性缺氧、胸内压力波动和睡眠碎片化。OSA与多种合并症和危险因素相关,造成了巨大的经济和社会负担。机器学习(ML)技术在预测OSA严重程度和理解其复杂发病机制方面具有前景。本研究旨在比较不同ML技术在预测OSA严重程度方面的准确性,并确定导致OSA的关键相关因素。

方法

疑似OSA的成年患者接受了临床评估和多导睡眠图检查。收集了人口统计学、人体测量学和临床数据。采用了五种监督式ML模型(逻辑回归、决策树、随机森林、极端梯度提升、支持向量机),并通过网格搜索和交叉验证进行了优化。

结果

ML模型在不同OSA严重程度水平上表现出不同的性能。支持向量机在轻度OSA中表现出最高的准确性,极端梯度提升在中度OSA中表现最佳,随机森林在重度OSA中表现最佳。逻辑回归在中度和重度OSA中显示出最高的曲线下面积。人体测量指标、性别和高血压是OSA严重程度的重要预测因素。

结论

ML模型为预测OSA严重程度和识别相关因素提供了有价值的见解。我们的研究结果支持了ML在OSA管理中的潜在临床应用价值,尽管还需要进一步的验证和完善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验