Suppr超能文献

统计机器学习算法能否有助于阻塞性睡眠呼吸暂停严重程度的分类,以优化多导睡眠图资源的利用?

Can Statistical Machine Learning Algorithms Help for Classification of Obstructive Sleep Apnea Severity to Optimal Utilization of Polysomnography Resources?

作者信息

Bozkurt Selen, Bostanci Asli, Turhan Murat

机构信息

Dr. Selen Bozkurt, Akdeniz Universitesi, Department of Biostatistics and Medical Informatics, Antalya, Turkey, E-mail:

出版信息

Methods Inf Med. 2017 Aug 11;56(4):308-318. doi: 10.3414/ME16-01-0084. Epub 2017 Jun 7.

Abstract

OBJECTIVES

The goal of this study is to evaluate the results of machine learning methods for the classification of OSA severity of patients with suspected sleep disorder breathing as normal, mild, moderate and severe based on non-polysomnographic variables: 1) clinical data, 2) symptoms and 3) physical examination.

METHODS

In order to produce classification models for OSA severity, five different machine learning methods (Bayesian network, Decision Tree, Random Forest, Neural Networks and Logistic Regression) were trained while relevant variables and their relationships were derived empirically from observed data. Each model was trained and evaluated using 10-fold cross-validation and to evaluate classification performances of all methods, true positive rate (TPR), false positive rate (FPR), Positive Predictive Value (PPV), F measure and Area Under Receiver Operating Characteristics curve (ROC-AUC) were used.

RESULTS

Results of 10-fold cross validated tests with different variable settings promisingly indicated that the OSA severity of suspected OSA patients can be classified, using non-polysomnographic features, with 0.71 true positive rate as the highest and, 0.15 false positive rate as the lowest, respectively. Moreover, the test results of different variables settings revealed that the accuracy of the classification models was significantly improved when physical examination variables were added to the model.

CONCLUSIONS

Study results showed that machine learning methods can be used to estimate the probabilities of no, mild, moderate, and severe obstructive sleep apnea and such approaches may improve accurate initial OSA screening and help referring only the suspected moderate or severe OSA patients to sleep laboratories for the expensive tests.

摘要

目的

本研究的目的是评估机器学习方法基于非多导睡眠图变量(1)临床数据、(2)症状和(3)体格检查,对疑似睡眠呼吸障碍患者的阻塞性睡眠呼吸暂停(OSA)严重程度进行分类(分为正常、轻度、中度和重度)的结果。

方法

为了生成OSA严重程度的分类模型,对五种不同的机器学习方法(贝叶斯网络、决策树、随机森林、神经网络和逻辑回归)进行了训练,同时从观察数据中凭经验得出相关变量及其关系。每个模型使用10折交叉验证进行训练和评估,为了评估所有方法的分类性能,使用了真阳性率(TPR)、假阳性率(FPR)、阳性预测值(PPV)、F值和受试者工作特征曲线下面积(ROC-AUC)。

结果

不同变量设置的10折交叉验证测试结果有前景地表明,使用非多导睡眠图特征,可以对疑似OSA患者的OSA严重程度进行分类,真阳性率最高为0.71,假阳性率最低为0.15。此外,不同变量设置的测试结果显示,当将体格检查变量添加到模型中时,分类模型的准确性显著提高。

结论

研究结果表明,机器学习方法可用于估计无、轻度、中度和重度阻塞性睡眠呼吸暂停的概率,此类方法可能会改善OSA的准确初步筛查,并有助于仅将疑似中度或重度OSA患者转诊至睡眠实验室进行昂贵的检测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验