Suppr超能文献

用于乳腺组织病理图像中肿瘤浸润淋巴细胞(TILs)评分的观察者间一致性测量的可解释框架:一项原理验证研究。

An interpretable framework for inter-observer agreement measurements in TILs scoring on histopathological breast images: A proof-of-principle study.

作者信息

Capar Abdulkerim, Ekinci Dursun Ali, Ertano Mucahit, Niazi M Khalid Khan, Balaban Erva Bengu, Aloglu Ibrahim, Dogan Meryem, Su Ziyu, Aker Fugen Vardar, Gurcan Metin Nafi

机构信息

Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America.

Informatics Institute, Istanbul Technical University, Istanbul, Turkiye.

出版信息

PLoS One. 2024 Dec 5;19(12):e0314450. doi: 10.1371/journal.pone.0314450. eCollection 2024.

Abstract

Breast cancer, a widespread and life-threatening disease, necessitates precise diagnostic tools for improved patient outcomes. Tumor-Infiltrating Lymphocytes (TILs), reflective of the immune response against cancer cells, are pivotal in understanding breast cancer behavior. However, inter-observer variability in TILs scoring methods poses challenges to reliable assessments. This study introduces a novel and interpretable proof-of-principle framework comprising two innovative inter-observer agreement measures. The first method, Boundary-Weighted Fleiss' Kappa (BWFK), addresses tissue segmentation predictions, focusing on mitigating disagreements along tissue boundaries. BWFK enhances the accuracy of stromal segmentation, providing a nuanced assessment of inter-observer agreement. The second proposed method, the Distance Based Cell Agreement Algorithm (DBCAA), eliminates the need for ground truth annotations in cell detection predictions. This innovative approach offers versatility across histopathological analyses, overcoming data availability challenges. Both methods were applied to assess inter-observer agreement using a clinical image dataset consisting of 25 images of invasive ductal breast carcinoma tissue, each annotated by four pathologists, serving as a proof-of-principle. Experimental investigations demonstrated that the BWFK method yielded gains of up to 32% compared to the standard Fleiss' Kappa model. Furthermore, a procedure for conducting clinical validations of artificial intelligence (AI) based cell detection methods was elucidated. Thoroughly validated on a clinical dataset, the framework contributes to standardized, reliable, and interpretable inter-observer agreement assessments. This study is the first examination of inter-observer agreements in stromal segmentation and lymphocyte detection for the TILs scoring problem. The study emphasizes the potential impact of these measures in advancing histopathological image analysis, fostering consensus in TILs scoring, and ultimately improving breast cancer diagnostics and treatment planning. The source code and implementation guide for this study are accessible on our GitHub page, and the full clinical dataset is available for academic and research purposes on Kaggle.

摘要

乳腺癌是一种广泛存在且危及生命的疾病,需要精确的诊断工具来改善患者预后。肿瘤浸润淋巴细胞(TILs)反映了机体对癌细胞的免疫反应,对于理解乳腺癌的行为至关重要。然而,TILs评分方法在观察者之间存在差异,这给可靠的评估带来了挑战。本研究引入了一个新颖且可解释的原理验证框架,该框架包含两种创新的观察者间一致性测量方法。第一种方法是边界加权Fleiss' Kappa(BWFK),用于处理组织分割预测,重点是减少沿组织边界的分歧。BWFK提高了基质分割的准确性,对观察者间一致性提供了细致入微的评估。第二种方法是基于距离的细胞一致性算法(DBCAA),它消除了细胞检测预测中对真实标注的需求。这种创新方法在各种组织病理学分析中具有通用性,克服了数据可用性方面的挑战。两种方法都应用于一个由25张浸润性导管癌组织图像组成的临床图像数据集来评估观察者间一致性,每张图像由四位病理学家进行标注,以此作为原理验证。实验研究表明,与标准的Fleiss' Kappa模型相比,BWFK方法的增益高达32%。此外,还阐明了一种对基于人工智能(AI)的细胞检测方法进行临床验证的程序。该框架在临床数据集上经过了充分验证,有助于进行标准化、可靠且可解释的观察者间一致性评估。本研究首次对TILs评分问题中基质分割和淋巴细胞检测的观察者间一致性进行了考察。该研究强调了这些措施在推进组织病理学图像分析、促进TILs评分的共识以及最终改善乳腺癌诊断和治疗规划方面的潜在影响。本研究的源代码和实施指南可在我们的GitHub页面上获取,完整的临床数据集可在Kaggle上用于学术和研究目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c746/11620390/5bd08d55ee32/pone.0314450.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验