Valderrama-Landeros Luis, Troche-Souza Carlos, Alcántara-Maya José A, Velázquez-Salazar Samuel, Vázquez-Balderas Berenice, Villeda-Chávez Edgar, Cruz-López María I, Ressl Rainer, Flores-Verdugo Francisco, Flores-de-Santiago Francisco
Coordinación de Geomática, Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad, Tlalpan, Ciudad de México, Mexico.
Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, Mexico.
PLoS One. 2024 Dec 5;19(12):e0315181. doi: 10.1371/journal.pone.0315181. eCollection 2024.
Mangrove forests are commonly mapped using spaceborne remote sensing data due to the challenges of field endeavors in such harsh environments. However, these methods usually require a substantial level of manual processing for each image. Hence, conservation practitioners prioritize using cloud computing platforms to obtain accurate canopy classifications of large extensions of mangrove forests. The objective of this study was to analyze the spatial distribution and rate of change (area gain and loss) of the red mangrove (Rhizophora mangle) and other dominant mangrove species, mainly Avicennia germinans and Laguncularia racemosa, between 2015 and 2020 throughout the northwestern coast of Mexico. Bimonthly data of the Combined Mangrove Recognition Index (CMRI) from all available Sentinel-2 data were processed with the Google Earth Engine cloud computing platform. The results indicated an extension of 42865 ha of red mangrove and 139602 ha of other dominant mangrove species in the Gulf of California and the Pacific northwestern coast of Mexico for 2020. The mangrove extension experienced a notable decline of 1817 ha from 2015 to 2020, largely attributed to the expansion of aquaculture ponds and the destructive effects of hurricanes. Considering the two mangrove classes, the overall classification accuracies were 90% and 92% for the 2015 and 2020 maps, respectively. The advantages of the method compared to supervised classifications and traditional vegetation indices are discussed, as are the disadvantages concerning the spatial resolution and the minimum detection area. The work is a national effort to assist in decision-making to prioritize resource allocations for blue carbon, rehabilitation, and climate change mitigation programs.
由于在如此恶劣的环境中进行实地考察存在挑战,红树林通常使用星载遥感数据进行测绘。然而,这些方法通常需要对每张图像进行大量的人工处理。因此,保护从业者优先使用云计算平台来获得大面积红树林的准确树冠分类。本研究的目的是分析2015年至2020年期间墨西哥西北海岸红树(Rhizophora mangle)以及其他主要优势红树林物种(主要是白骨壤(Avicennia germinans)和拉贡木(Laguncularia racemosa))的空间分布和变化率(面积增加和减少)。利用谷歌地球引擎云计算平台处理了所有可用哨兵 - 2数据的双月组合红树林识别指数(CMRI)数据。结果表明,2020年加利福尼亚湾和墨西哥西北太平洋海岸的红树面积为42865公顷,其他优势红树林物种面积为139602公顷。从2015年到2020年,红树林面积显著减少了1817公顷,这主要归因于水产养殖池塘的扩张和飓风的破坏影响。考虑到这两类红树林,2015年和2020年地图的总体分类准确率分别为90%和92%。文中讨论了该方法与监督分类和传统植被指数相比的优势,以及在空间分辨率和最小检测面积方面的劣势。这项工作是一项全国性的努力,旨在协助决策,为蓝碳、恢复和气候变化缓解计划确定资源分配的优先次序。