Suppr超能文献

使用机器学习模型预测血液透析患者的每月甲状旁腺激素水平。

Using machine learning models for predicting monthly iPTH levels in hemodialysis patients.

作者信息

Hsieh Chih-Chieh, Hsieh Chin-Wen, Uddin Mohy, Hsu Li-Ping, Hu Hao-Huan, Syed-Abdul Shabbir

机构信息

Anhsin Health Care, Pingtung, Taiwan; Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan.

Division of Nephrology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108541. doi: 10.1016/j.cmpb.2024.108541. Epub 2024 Nov 30.

Abstract

BACKGROUND AND OBJECTIVE

Intact parathyroid hormone (iPTH), also known as active parathyroid hormone, is an important indicator commonly for monitoring secondary hyperparathyroidism (SHPT) in patients undergoing hemodialysis. The aim of this study was to use machine learning (ML) models to predict monthly iPTH levels in patients undergoing hemodialysis.

METHODS

We conducted a retrospective study on patients undergoing regular hemodialysis. Patients' blood examinations data was collected from Taiwan Society of Nephrology - Kidney Dialysis, Transplantation (TSN-KiDiT) registration system, and patients' medications data was collected from Pingtung Christian Hospital (PTCH), Taiwan. We used five different ML models to classify patients into three distinct categories based on their iPTH levels: iPTH < 150, iPTH ≥ 150 & iPTH < 600, and iPTH ≥ 600(pg/ml).

RESULTS

We ultimately included 1,351 patients in our study and processed the data in four different ways. These methods varied based on the duration of the data (either using data from just one month or continuously over three months) and the number of features used (either all 52 features or only 20 most important features identified by SHapley Additive exPlanations (SHAP) analysis). The XGBoost model, using data from a continuous three-month period and all available features, yielded the best Weighted AUROC (0.922).

CONCLUSIONS

ML is highly effective in predicting iPTH levels in hemodialysis patients, notably accurate for those with iPTH over 600 pg/ml. This method enables early identification of high-risk patients, reducing reliance on retrospective blood test assessments. Future research should focus on advancing explainable AI methods to foster clinicians' trust, and developing adaptable ML frameworks that could seamlessly integrate with existing healthcare systems.

摘要

背景与目的

完整甲状旁腺激素(iPTH),也称为活性甲状旁腺激素,是监测血液透析患者继发性甲状旁腺功能亢进(SHPT)的常用重要指标。本研究旨在使用机器学习(ML)模型预测血液透析患者的每月iPTH水平。

方法

我们对接受定期血液透析的患者进行了一项回顾性研究。患者的血液检查数据来自台湾肾脏病学会-肾脏透析、移植(TSN-KiDiT)登记系统,患者的用药数据来自台湾屏东基督教医院(PTCH)。我们使用五种不同的ML模型,根据患者的iPTH水平将其分为三个不同类别:iPTH < 150、iPTH≥150且iPTH < 600以及iPTH≥600(pg/ml)。

结果

我们最终在研究中纳入了1351名患者,并以四种不同方式处理数据。这些方法因数据持续时间(使用仅一个月的数据或连续三个月的数据)和使用的特征数量(全部52个特征或仅由SHapley加性解释(SHAP)分析确定的20个最重要特征)而异。使用连续三个月的数据和所有可用特征的XGBoost模型产生了最佳加权曲线下面积(Weighted AUROC,0.922)。

结论

ML在预测血液透析患者的iPTH水平方面非常有效,对于iPTH超过600 pg/ml的患者尤其准确。这种方法能够早期识别高危患者,减少对回顾性血液检测评估的依赖。未来的研究应专注于推进可解释人工智能方法以增强临床医生的信任,并开发能够与现有医疗系统无缝集成的适应性ML框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验