Suppr超能文献

机器学习预测接受血液透析患者的透析后疲劳

Machine learning to predict postdialysis fatigue in patients undergoing hemodialysis.

作者信息

Zhang Yuhan, Guo Jue, Yang Na, Li Xiangyun, Liu Yuxiang, Yan Meiqin, Shen Peng

机构信息

College of Nursing, Shanxi Medical University, Shanxi, China.

The Blood purification Department of Shanxi Provincial People's Hospital, Shanxi, China.

出版信息

Ren Fail. 2025 Dec;47(1):2529452. doi: 10.1080/0886022X.2025.2529452. Epub 2025 Jul 27.

Abstract

BACKGROUND

Machine learning (ML) has been widely used to predict complications and prognosis in patients undergoing hemodialysis (HD). However, accurate and efficient models for predicting postdialysis fatigue (PDF) in this population are still needed because PDF is surprisingly prevalent.

AIMS

This study aimed to explore the potential of ML models for predicting PDF in patients undergoing HD.

DATA SOURCES

A total of 1,281 Chinese patients undergoing HD from six tertiary hospitals (65.26% male, mean age = 54.48 years).

DESIGN

Cross-sectional study.

METHODS

Seven ML models were compared: Logistic regression (LR), Decision tree (DT), Random forests (RF), LightGBM (LGBM), CatBoost, XGBoost (XGB), and Gradient boosting tree (GBT), to predict the PDF and identify variables with predictive value based on the best-performing model among Chinese patients undergoing HD. The study findings were reported in accordance with the TRIPOD+AI guidelines.

RESULTS

The RF model achieved the relatively optimal and stable performance, with an area under the curve of 0.855, accuracy of 0.773, F1 score of 0.769, and Brier score of 0.155 in test set. Resilience, appetite, potassium levels, sleep quality, constipation, history of fistula surgery, diastolic blood bressure, and the category of "combined other diseases" were the strongest predictors of PDF.

CONCLUSION

ML models can serve as convenient screening and assessment tools for PDF risk in Chinese patients undergoing HD. In combination with the SHapley Additive exPlanations (SHAP) approach, the proposed framework provides a more intuitive and comprehensive interpretation of the predictive model, thereby allowing clinicians to better understand the decision-making process of the model and impact of the factors associated with PDF.

摘要

背景

机器学习(ML)已被广泛用于预测接受血液透析(HD)患者的并发症和预后。然而,由于透析后疲劳(PDF)的发生率惊人地高,因此仍需要准确且高效的模型来预测该人群的PDF。

目的

本研究旨在探索ML模型预测接受HD患者PDF的潜力。

数据来源

来自六家三级医院的1281例接受HD的中国患者(男性占65.26%,平均年龄=54.48岁)。

设计

横断面研究。

方法

比较了七种ML模型:逻辑回归(LR)、决策树(DT)、随机森林(RF)、LightGBM(LGBM)、CatBoost、XGBoost(XGB)和梯度提升树(GBT),以预测PDF,并根据接受HD的中国患者中表现最佳的模型识别具有预测价值的变量。研究结果按照TRIPOD+AI指南进行报告。

结果

RF模型表现相对最优且稳定,测试集中曲线下面积为0.855,准确率为0.773,F1分数为0.769,布里尔分数为0.155。恢复力、食欲、血钾水平、睡眠质量、便秘、动静脉内瘘手术史、舒张压以及“合并其他疾病”类别是PDF最强的预测因素。

结论

ML模型可作为接受HD的中国患者PDF风险的便捷筛查和评估工具。结合SHapley加性解释(SHAP)方法,所提出的框架为预测模型提供了更直观和全面的解释,从而使临床医生能够更好地理解模型的决策过程以及与PDF相关因素的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/12302430/88ef3ccc6ab0/IRNF_A_2529452_UF0001_C.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验