Suppr超能文献

解析阿尔茨海默病中的蛋白质:一种与AlphaFold3集成用于三维结构预测的新孟德尔随机化方法。

Deciphering proteins in Alzheimer's disease: A new Mendelian randomization method integrated with AlphaFold3 for 3D structure prediction.

作者信息

Yao Minhao, Miller Gary W, Vardarajan Badri N, Baccarelli Andrea A, Guo Zijian, Liu Zhonghua

机构信息

Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China.

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.

出版信息

Cell Genom. 2024 Dec 11;4(12):100700. doi: 10.1016/j.xgen.2024.100700. Epub 2024 Dec 4.

Abstract

Hidden confounding biases hinder identifying causal protein biomarkers for Alzheimer's disease in non-randomized studies. While Mendelian randomization (MR) can mitigate these biases using protein quantitative trait loci (pQTLs) as instrumental variables, some pQTLs violate core assumptions, leading to biased conclusions. To address this, we propose MR-SPI, a novel MR method that selects valid pQTL instruments using Leo Tolstoy's Anna Karenina principle and performs robust post-selection inference. Integrating MR-SPI with AlphaFold3, we developed a computational pipeline to identify causal protein biomarkers and predict 3D structural changes. Applied to genome-wide proteomics data from 54,306 UK Biobank participants and 455,258 subjects (71,880 cases and 383,378 controls) for a genome-wide association study of Alzheimer's disease, we identified seven proteins (TREM2, PILRB, PILRA, EPHA1, CD33, RET, and CD55) with structural alterations due to missense mutations. These findings offer insights into the etiology and potential drug targets for Alzheimer's disease.

摘要

在非随机研究中,隐藏的混杂偏倚阻碍了阿尔茨海默病因果蛋白生物标志物的识别。虽然孟德尔随机化(MR)可以使用蛋白质定量性状位点(pQTL)作为工具变量来减轻这些偏倚,但一些pQTL违反了核心假设,导致结论有偏差。为了解决这个问题,我们提出了MR-SPI,这是一种新颖的MR方法,它利用列夫·托尔斯泰的《安娜·卡列尼娜》原则选择有效的pQTL工具,并进行稳健的选择后推断。将MR-SPI与AlphaFold3相结合,我们开发了一个计算流程来识别因果蛋白生物标志物并预测三维结构变化。应用于来自54306名英国生物银行参与者和455258名受试者(71880例病例和383378例对照)的全基因组蛋白质组学数据进行阿尔茨海默病全基因组关联研究,我们鉴定出七种由于错义突变而发生结构改变的蛋白质(TREM2、PILRB、PILRA、EPHA1、CD33、RET和CD55)。这些发现为阿尔茨海默病的病因学和潜在药物靶点提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db3e/11701259/445844fe6f77/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验