Yang Yunjun, Han Kaiting, Xu Zhenyu, Cai Zhiping, Zhao Hai, Hong Julu, Pan Jiawei, Guo Li, Huang Weijun, Hu Qiugen, Xu Zhifeng
Department of Radiology, The First People's Hospital of Foshan, Foshan, China (Y.Y., K.H., Z.X., H.Z., J.H., Z.X.).
Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China (Z.C., Q.H.).
Acad Radiol. 2025 May;32(5):2642-2654. doi: 10.1016/j.acra.2024.11.045. Epub 2024 Dec 4.
To develop interpretable machine learning models that utilize deep learning (DL) and radiomics based on multiparametric Magnetic resonance imaging (MRI) to predict preoperative lymph node (LN) metastasis in rectal cancer.
This retrospective study involved 286 cancer patients confirmed by histopathology from center 1 (Training set) and 66 patients from center 2 (External test set). Radiomics features were extracted from T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) sequences, whereas DL features were obtained using four models: MobileNet-V3-large, Inception-V3, ResNet50, and VGG16. These DL radiomics (DLR) features were then combined to construct a machine learning model. The Shapley additive interpretation (SHAP) tool was utilized to investigate the interpretability of the model. We evaluated and compared the diagnostic performance of senior and junior radiologists, with and without the aid of the optimal DLR model. Kaplan-Meier survival curve was used to analyze the prognosis of patients.
The DLR model outperforms individual DL models and the radiomics model. The MobileNet-V3-large combination radiomics signature demonstrated the best performance, achieving an AUC of 0.878 on the Training set and 0.752 on the External test set. Compared to the traditional radiomics model, the AUC for the Training set increased by 0.094 and by 0.051 for the External test set. This model facilitated improved diagnostic performance among both junior and senior radiologists. Specifically, the AUC values for junior and senior radiologists increased by 0.162 and 0.232, respectively, on the Training set; and by 0.096 and 0.113, respectively, on the External test set. The DLR model demonstrated strong performance in risk stratification for disease-free survival.
The DLR model developed from multiparametric MRI can effectively distinguish cancer LN metastasis and enhance radiologists' diagnostic performance.
开发可解释的机器学习模型,该模型基于多参数磁共振成像(MRI)利用深度学习(DL)和放射组学来预测直肠癌术前淋巴结(LN)转移情况。
这项回顾性研究纳入了来自中心1的286例经组织病理学确诊的癌症患者(训练集)和来自中心2的66例患者(外部测试集)。从T2加权成像(T2WI)和扩散加权成像(DWI)序列中提取放射组学特征,而DL特征则使用四种模型获得:MobileNet-V3-large、Inception-V3、ResNet50和VGG16。然后将这些DL放射组学(DLR)特征进行组合以构建机器学习模型。利用Shapley加性解释(SHAP)工具来研究模型的可解释性。我们评估并比较了有和没有最佳DLR模型辅助的资深和初级放射科医生的诊断性能。采用Kaplan-Meier生存曲线分析患者的预后情况。
DLR模型优于单个DL模型和放射组学模型。MobileNet-V3-large组合放射组学特征表现最佳,在训练集上的AUC为0.878,在外部测试集上为0.752。与传统放射组学模型相比,训练集的AUC增加了0.094,外部测试集增加了0.051。该模型提高了初级和资深放射科医生的诊断性能。具体而言,在训练集上,初级和资深放射科医生的AUC值分别增加了0.162和0.232;在外部测试集上分别增加了0.096和0.113。DLR模型在无病生存风险分层方面表现出强大性能。
基于多参数MRI开发的DLR模型能够有效区分癌症LN转移并提高放射科医生的诊断性能。