Lo David Y, Ahmadzada Boyukkhanim, Stachel MacKenna A, Schaefer Melia, Ashraf Usman, Wagner John I, Vanderslice Ethan J, Tornquist Madie, Mariakis Kendra, Halsten Peggy, Lindsay Christopher D, Beck Emily C, Nyberg Scott L, Ross Jeffrey J
Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA.
Department of Surgery, Mayo Clinic, Rochester, MN, USA.
Commun Med (Lond). 2024 Dec 5;4(1):259. doi: 10.1038/s43856-024-00676-8.
End-stage renal disease is a growing global health issue, disproportionately impacting low- and middle-income countries. While kidney transplantation remains the best treatment for end-stage renal disease, access to this treatment modality is limited by chronic donor organ shortages. To address this critical need, we are developing transplantable bioengineered kidney grafts.
Podocyte differentiation was achieved in adherent monoculture through Wnt and TGF-β inhibition with IWR-1 and SB431542, respectively. Podocytes along with endothelial cells were then used to recapitulate glomeruli within decellularized porcine kidney scaffolds to generate bioengineered kidneys grafts. These bioengineered kidney grafts were functionally assessed via normothermic perfusion which compared kidney grafts recellularized with only endothelial cells as a control to bi-culture kidney grafts comprised of endothelial cells and podocytes. Heterotopic implantation further tested bi-culture kidney graft function over 3 successive implant sessions with 1-2 grafts per session.
We demonstrate the ability to source primary human podocytes at scale. Decellularized porcine kidney grafts repopulated with podocytes and endothelial cells exhibit native glomerular structure and display blood filtration capabilities during normothermic perfusion testing. Extending these findings to a clinically relevant model, bioengineered kidneys produce urine with indices of filtration when heterotopically implanted in pigs.
Our results showcase a human-scale, transplantable bioengineered kidney capable of performing requisite filtration function. This study reinforces the possibility for the bioengineering of transplantable human kidneys, which could someday provide increased and more equitable access to kidney grafts for the treatment of end-stage renal disease.
终末期肾病是一个日益严重的全球健康问题,对低收入和中等收入国家的影响尤为严重。虽然肾移植仍然是终末期肾病的最佳治疗方法,但由于慢性供体器官短缺,这种治疗方式的可及性受到限制。为满足这一关键需求,我们正在研发可移植的生物工程肾移植物。
通过分别用IWR-1和SB431542抑制Wnt和TGF-β,在贴壁单培养中实现足细胞分化。然后将足细胞与内皮细胞一起用于在去细胞猪肾支架内重建肾小球,以生成生物工程肾移植物。通过常温灌注对这些生物工程肾移植物进行功能评估,将仅用内皮细胞重新细胞化的肾移植物作为对照,与由内皮细胞和足细胞组成的双培养肾移植物进行比较。异位植入在连续3次植入过程中进一步测试双培养肾移植物的功能,每次植入1-2个移植物。
我们展示了大规模获取原代人足细胞的能力。用足细胞和内皮细胞重新填充的去细胞猪肾移植物呈现出天然肾小球结构,并在常温灌注测试中显示出血液过滤能力。将这些发现扩展到临床相关模型,生物工程肾在异位植入猪体内时能产生具有过滤指标的尿液。
我们的结果展示了一种能够执行必要过滤功能的人体规模、可移植的生物工程肾。这项研究强化了可移植人肾生物工程的可能性,有朝一日可为治疗终末期肾病提供更多且更公平的肾移植物获取途径。