Bernstein Hans-Gert, Nussbaumer Madeleine, Vasilevska Veronika, Dobrowolny Henrik, Nickl-Jockschat Thomas, Guest Paul C, Steiner Johann
Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Mol Psychiatry. 2025 Mar;30(3):1102-1116. doi: 10.1038/s41380-024-02861-6. Epub 2024 Dec 5.
Dysfunctional glial cells play a pre-eminent role in schizophrenia pathophysiology. Post-mortem studies have provided evidence for significantly decreased glial cell numbers in different brain regions of individuals with schizophrenia. Reduced glial cell numbers are most pronounced in oligodendroglia, but reduced astrocyte cell densities have also been reported. This review highlights that oligo- and astroglial deficits are a key histopathological feature in schizophrenia, distinct from typical changes seen in neurodegenerative disorders. Significant deficits of oligodendrocytes in schizophrenia may arise in two ways: (i) demise of mature functionally compromised oligodendrocytes; and (ii) lack of mature oligodendrocytes due to failed maturation of progenitor cells. We also analyse in detail the controversy regarding deficits of astrocytes. Regardless of their origin, glial cell deficits have several pathophysiological consequences. Among these, myelination deficits due to a reduced number of oligodendrocytes may be the most important factor, resulting in the disconnectivity between neurons and different brain regions observed in schizophrenia. When glial cells die, it appears to be through degeneration, a process which is basically reversible. Thus, therapeutic interventions that (i) help rescue glial cells (ii) or improve their maturation might be a viable option. Since antipsychotic treatment alone does not seem to prevent glial cell loss or maturation deficits, there is intense search for new therapeutic options. Current proposals range from the application of antidepressants and other chemical agents as well as physical exercise to engrafting healthy glial cells into brains of schizophrenia patients.
功能失调的神经胶质细胞在精神分裂症的病理生理学中起着至关重要的作用。尸检研究表明,精神分裂症患者不同脑区的神经胶质细胞数量显著减少。神经胶质细胞数量的减少在少突胶质细胞中最为明显,但也有报道称星形胶质细胞密度降低。这篇综述强调,少突胶质细胞和星形胶质细胞的缺陷是精神分裂症的关键组织病理学特征,与神经退行性疾病中常见的典型变化不同。精神分裂症中少突胶质细胞的显著缺陷可能通过两种方式产生:(i)功能受损的成熟少突胶质细胞死亡;(ii)祖细胞成熟失败导致成熟少突胶质细胞缺乏。我们还详细分析了关于星形胶质细胞缺陷的争议。无论其起源如何,神经胶质细胞缺陷都有几种病理生理后果。其中,少突胶质细胞数量减少导致的髓鞘形成缺陷可能是最重要的因素,导致了精神分裂症中观察到的神经元与不同脑区之间的联系中断。当神经胶质细胞死亡时,似乎是通过退化,这一过程基本上是可逆的。因此,(i)帮助挽救神经胶质细胞或(ii)改善其成熟的治疗干预措施可能是一种可行的选择。由于仅使用抗精神病药物治疗似乎无法预防神经胶质细胞丢失或成熟缺陷,因此人们正在积极寻找新的治疗选择。目前的提议包括应用抗抑郁药和其他化学药物、体育锻炼以及将健康的神经胶质细胞移植到精神分裂症患者的大脑中。