Seely Andrew J E, Newman Kimberley, Ramchandani Rashi, Herry Christophe, Scales Nathan, Hudek Natasha, Brehaut Jamie, Jones Daniel, Ramsay Tim, Barnaby Doug, Fernando Shannon, Perry Jeffrey, Dhanani Sonny, Burns Karen E A
Faculty of Medicine Ottawa, University of Ottawa, Ottawa, ON, Canada.
Ottawa Hospital Research Institute, Ottawa, ON, Canada.
Crit Care. 2024 Dec 5;28(1):404. doi: 10.1186/s13054-024-05140-6.
Continuous waveform monitoring is standard-of-care for patients at risk for or with critically illness. Derived from waveforms, heart rate, respiratory rate and blood pressure variability contain useful diagnostic and prognostic information; and when combined with machine learning, can provide predictive indices relating to severity of illness and/or reduced physiologic reserve. Integration of predictive models into clinical decision support software (CDSS) tools represents a potential evolution of monitoring.
We perform a review and analysis of the multidisciplinary steps required to develop and rigorously evaluate predictive clinical decision support tools based on monitoring.
Development and evaluation of waveform-based variability-derived predictive models involves a multistep, multidisciplinary approach. The stepwise processes involves data science (data collection, waveform processing, variability analysis, statistical analysis, machine learning, predictive modelling), CDSS development (iterative research prototype evolution to commercial tool), and clinical research (observational and interventional implementation studies, followed by feasibility then definitive randomized controlled trials), and poses unique challenges (including technical, analytical, psychological, regulatory and commercial).
The proposed roadmap provides guidance for the development and evaluation of novel predictive CDSS tools with potential to help transform monitoring and improve care.
连续波形监测是危重症风险患者或危重症患者的标准治疗方法。从波形中得出的心率、呼吸频率和血压变异性包含有用的诊断和预后信息;与机器学习相结合时,可提供与疾病严重程度和/或生理储备降低相关的预测指标。将预测模型集成到临床决策支持软件(CDSS)工具中代表了监测的潜在发展方向。
我们对基于监测开发和严格评估预测性临床决策支持工具所需的多学科步骤进行了综述和分析。
基于波形变异性的预测模型的开发和评估涉及多步骤、多学科方法。逐步过程包括数据科学(数据收集、波形处理、变异性分析、统计分析、机器学习、预测建模)、CDSS开发(从迭代研究原型发展到商业工具)以及临床研究(观察性和干预性实施研究,随后进行可行性研究,然后是确定性随机对照试验),并带来独特的挑战(包括技术、分析、心理、监管和商业方面)。
所提出的路线图为新型预测性CDSS工具的开发和评估提供了指导,这些工具有可能帮助改变监测方式并改善护理。