Suppr超能文献

监测发展路线图:开发和评估基于波形变异性的人工智能驱动的预测性临床决策支持软件工具。

Roadmap for the evolution of monitoring: developing and evaluating waveform-based variability-derived artificial intelligence-powered predictive clinical decision support software tools.

作者信息

Seely Andrew J E, Newman Kimberley, Ramchandani Rashi, Herry Christophe, Scales Nathan, Hudek Natasha, Brehaut Jamie, Jones Daniel, Ramsay Tim, Barnaby Doug, Fernando Shannon, Perry Jeffrey, Dhanani Sonny, Burns Karen E A

机构信息

Faculty of Medicine Ottawa, University of Ottawa, Ottawa, ON, Canada.

Ottawa Hospital Research Institute, Ottawa, ON, Canada.

出版信息

Crit Care. 2024 Dec 5;28(1):404. doi: 10.1186/s13054-024-05140-6.

Abstract

BACKGROUND

Continuous waveform monitoring is standard-of-care for patients at risk for or with critically illness. Derived from waveforms, heart rate, respiratory rate and blood pressure variability contain useful diagnostic and prognostic information; and when combined with machine learning, can provide predictive indices relating to severity of illness and/or reduced physiologic reserve. Integration of predictive models into clinical decision support software (CDSS) tools represents a potential evolution of monitoring.

METHODS

We perform a review and analysis of the multidisciplinary steps required to develop and rigorously evaluate predictive clinical decision support tools based on monitoring.

RESULTS

Development and evaluation of waveform-based variability-derived predictive models involves a multistep, multidisciplinary approach. The stepwise processes involves data science (data collection, waveform processing, variability analysis, statistical analysis, machine learning, predictive modelling), CDSS development (iterative research prototype evolution to commercial tool), and clinical research (observational and interventional implementation studies, followed by feasibility then definitive randomized controlled trials), and poses unique challenges (including technical, analytical, psychological, regulatory and commercial).

CONCLUSIONS

The proposed roadmap provides guidance for the development and evaluation of novel predictive CDSS tools with potential to help transform monitoring and improve care.

摘要

背景

连续波形监测是危重症风险患者或危重症患者的标准治疗方法。从波形中得出的心率、呼吸频率和血压变异性包含有用的诊断和预后信息;与机器学习相结合时,可提供与疾病严重程度和/或生理储备降低相关的预测指标。将预测模型集成到临床决策支持软件(CDSS)工具中代表了监测的潜在发展方向。

方法

我们对基于监测开发和严格评估预测性临床决策支持工具所需的多学科步骤进行了综述和分析。

结果

基于波形变异性的预测模型的开发和评估涉及多步骤、多学科方法。逐步过程包括数据科学(数据收集、波形处理、变异性分析、统计分析、机器学习、预测建模)、CDSS开发(从迭代研究原型发展到商业工具)以及临床研究(观察性和干预性实施研究,随后进行可行性研究,然后是确定性随机对照试验),并带来独特的挑战(包括技术、分析、心理、监管和商业方面)。

结论

所提出的路线图为新型预测性CDSS工具的开发和评估提供了指导,这些工具有可能帮助改变监测方式并改善护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9b/11619131/3ebc2e87eca6/13054_2024_5140_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验