Sohail Yasir, Zhang Chongle, Gao Shaohua, Zhang Jinyu, Song Wenli, Li Xuanzhe, Wang Bo, Li Suzhi, Xue Dezhen, Liu Gang, Maawad Emad, Gan Weimin, Ma Evan, Sun Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, P. R. China.
Adv Mater. 2025 Jan;37(4):e2410923. doi: 10.1002/adma.202410923. Epub 2024 Dec 5.
High strength and large ductility, leading to a high material toughness (area under the stress-strain curve), are desirable for alloys used in cryogenic applications. Assisted by domain-knowledge-informed machine learning, here a complex concentrated FeCoNiAlTa alloy is designed, which uses L1 coherent nanoprecipitates in a high volume fraction (≈65 ± 3 vol.%) in a face-centered-cubic (FCC) solid solution matrix that undergoes FCC-to-body-centered-cubic (BCC) phase transformation upon tensile straining. Unlike FCC-to-BCT phase transformation involving brittle carbon-enriched martensite, the BCC martensite in this alloy does not cause brittleness at 77 K. The FeCoNiAlTa multi-principal element alloy achieves a high yield strength ≈1.4 GPa, a high work hardening rate >4 GPa, an ultimate tensile strength ≈2.25 GPa, and a large uniform elongation ≈45%, leading to record-high material toughness compared with previous cryogenic alloys such as 316L series stainless steels and recent high-entropy alloys. The nanoprecipitates with nanoscale spacing (≈7.5 nm), apart from serving as dislocation obstacles for strengthening and dislocation sources for sustainable ductility, also undergo deformation twinning. Taken together, these mechanisms are found to be highly effective in strengthening and strain hardening upon tensile straining at liquid nitrogen temperature. These findings demonstrate how to effectively integrate strengthening mechanisms to synergize superior mechanical properties in special-purpose alloys.
高强度和大延展性,从而带来高材料韧性(应力-应变曲线下的面积),是低温应用中使用的合金所期望具备的特性。在领域知识驱动的机器学习辅助下,本文设计了一种复杂的高熵FeCoNiAlTa合金,它在面心立方(FCC)固溶体基体中使用了高体积分数(≈65 ± 3 vol.%)的L1相相干纳米析出相,该基体在拉伸应变时会发生从FCC到体心立方(BCC)的相变。与涉及富碳脆性马氏体的FCC到BCT相变不同,该合金中的BCC马氏体在77 K时不会导致脆性。FeCoNiAlTa多主元合金实现了约1.4 GPa的高屈服强度、>4 GPa的高加工硬化率、约2.25 GPa的极限抗拉强度和约45%的大均匀伸长率,与之前的低温合金如316L系列不锈钢和近期的高熵合金相比,材料韧性达到了创纪录的高水平。具有纳米级间距(≈7.5 nm)的纳米析出相,除了作为位错强化障碍物和可持续延展性的位错源外,还会发生形变孪晶。综合来看,这些机制在液氮温度下拉伸应变时的强化和应变硬化方面被发现是非常有效的。这些发现展示了如何有效地整合强化机制,以协同实现特殊用途合金的优异力学性能。