Chen Zhen, Chen Yang, Wei Daixiu, Liu Xu, Luo Xuan, Xiang Henggao, Gong Wu, Harjo Stefanus, Kawasaki Takuro, Hou Rui, Zhang Jinpeng, Zhu Demin, Tang Jiheng, Li Luo, Xie Jianghui, Zheng Gong, Qi Zhixiang, Sheng Howard, Chen Guang
Jiangsu Belight Laboratory, State Key Laboratory of Advanced Casting Technologies, Nanjing University of Science and Technology, Nanjing, 210094, China.
State Key Laboratory of Light Superalloys, Luoyang, 471023, China.
Nat Commun. 2025 Jul 14;16(1):6480. doi: 10.1038/s41467-025-61494-7.
Developing alloys with both ultrahigh strength and ductility remains a formidable scientific challenge, primarily due to the inherent strength-ductility tradeoff. Here, we present an approach to enhance the ductility and strength of a medium-entropy alloy (MEA) featuring a fully recrystallized face-centered cubic/hexagonal close-packed dual-phase ultrafine-grained architecture. This is achieved by activating unusual non-basal slips in the ordered hexagonal close-packed superlattice nanoprecipitates, resulting in this MEA that exhibits remarkable uniform elongation (ε) and ultrahigh yield strength (σ) across a wide temperature range, particularly at cryogenic temperatures (σ ~ 2100 MPa, ε ~ 15%). The non-basal slips in the secondary phase are activated at ultrahigh stress levels, which are compatible with the increased yield strength of the MEA attained through multiple strengthening mechanisms, including grain boundaries, lattice friction, and second-phase nanoprecipitates provided by the multi-principal elements of the entropy alloy. The deformation mechanism elucidated in this work not only leverages the significant strengthening and strain hardening effects of brittle nanoprecipitates but also enables the ductilization of the alloy through sequential non-basal slip during ongoing deformation.
开发兼具超高强度和延展性的合金仍然是一项艰巨的科学挑战,这主要是由于强度与延展性之间存在固有的权衡关系。在此,我们提出一种方法来提高一种中熵合金(MEA)的延展性和强度,该合金具有完全再结晶的面心立方/密排六方双相超细晶粒结构。这是通过激活有序密排六方超晶格纳米析出物中不寻常的非基面滑移来实现的,从而使这种中熵合金在很宽的温度范围内,特别是在低温下,表现出显著的均匀伸长率(ε)和超高屈服强度(σ)(σ ~ 2100 MPa,ε ~ 15%)。第二相中的非基面滑移在超高应力水平下被激活,这与通过多种强化机制(包括晶界、晶格摩擦以及由熵合金的多主元提供的第二相纳米析出物)所实现的中熵合金屈服强度的提高是相容的。这项工作中阐明的变形机制不仅利用了脆性纳米析出物的显著强化和应变硬化效应,还通过在持续变形过程中的连续非基面滑移使合金实现了延性化。