Suppr超能文献

使用惯性测量单元(IMU)传感器书写旁遮普语字符的惯性测量数据集。

Dataset of inertial measurements for writing Punjabi characters using IMU sensors.

作者信息

Sharma AnchalPreet, Kumar Harsh, Kaur Lakhjeet, Kumar Ramakant, Kumar Pravin

机构信息

Department of Computer Science, Akal University, Bathinda, Punjab 151302, India.

Department of Computer Science, GLA University, Mathura, UP 281406, India.

出版信息

Data Brief. 2024 Nov 8;57:111083. doi: 10.1016/j.dib.2024.111083. eCollection 2024 Dec.

Abstract

This study introduces a comprehensive methodology for gathering datasets to recognize handwritten Punjabi alphabets, utilizing Inertial Measurement Units (IMUs) to capture the dynamic movement patterns inherent in handwriting. The approach considers the diverse writing styles found across Punjabi writers, which presents unique challenges due to regional variations in script. The dataset and collection system are designed to enhance recognition accuracy by harnessing this diversity. The data collection process involved recording handwriting movements from multiple participants, ensuring the dataset reflects a wide range of writing styles. By leveraging IMUs, the system tracks detailed handwriting motions, enhancing character recognition accuracy. The use of IMUs allows for the detailed tracking of handwriting movements, which is crucial for improving the accuracy of character recognition. Preliminary experimental results indicate that the dataset not only effectively captures the nuances of handwritten Punjabi but also demonstrates potential in recognizing handwritten English alphabets within the Indian context. This research contributes significantly to the field of pattern recognition, offering insights that could lead to the development of more robust handwriting recognition systems particularly suited for various linguistic and cultural settings.

摘要

本研究介绍了一种用于收集数据集以识别手写旁遮普语字母的综合方法,利用惯性测量单元(IMU)来捕捉手写中固有的动态运动模式。该方法考虑了旁遮普语书写者中发现的各种书写风格,由于文字的区域差异,这带来了独特的挑战。数据集和收集系统旨在通过利用这种多样性来提高识别准确率。数据收集过程包括记录多个参与者的手写动作,确保数据集反映广泛的书写风格。通过利用IMU,系统跟踪详细的手写动作,提高字符识别准确率。IMU的使用允许对手写动作进行详细跟踪,这对于提高字符识别准确率至关重要。初步实验结果表明,该数据集不仅有效地捕捉了手写旁遮普语的细微差别,而且在印度语境下识别手写英语字母方面也显示出潜力。这项研究对模式识别领域做出了重大贡献,提供了一些见解,可能会促成开发出更强大的、特别适用于各种语言和文化环境的手写识别系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7855/11617984/7820987da1e8/gr1.jpg

相似文献

3
Kurdish Handwritten character recognition using deep learning techniques.基于深度学习技术的库尔德手写字符识别。
Gene Expr Patterns. 2022 Dec;46:119278. doi: 10.1016/j.gep.2022.119278. Epub 2022 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验