Suppr超能文献

利用基于点云分割的3D建模以及田间机器人和数码单反相机拍摄的RGB图像对田间种植的番茄产量进行估计。

Field-grown tomato yield estimation using point cloud segmentation with 3D shaping and RGB pictures from a field robot and digital single lens reflex cameras.

作者信息

Ambrus B, Teschner G, Kovács A J, Neményi M, Helyes L, Pék Z, Takács S, Alahmad T, Nyéki A

机构信息

Széchenyi István University, Albert Kázmér Faculty of Mosonmagyaróvár, Department of Biosystems and Precision Technology, Vár 2., Mosonmagyaróvár 9200, Hungary.

Hungarian University of Agriculture and Life Sciences, Institute of Horticultural, Páter Károly 1, Gödöllő, 2100, Hungary.

出版信息

Heliyon. 2024 Sep 26;10(20):e37997. doi: 10.1016/j.heliyon.2024.e37997. eCollection 2024 Oct 30.

Abstract

The aim of this study was to estimate field-grown tomato yield (weight) and quantity of tomatoes using a self-developed robot and digital single lens reflex (DSLR) camera pictures. The authors suggest a new approach to predicting tomato yield that is based on images taken in the field, 3D scanning, and shape. Field pictures were used for tomato segmentation to determine the ripeness of the crop. A convolution neural network (CNN) model using TensorFlow library was devised for the segmentation of tomato berries along with a small robot, which had a 59.3 % F1 score. To enhance the accurate tomato crop model and to estimate the yield later, point cloud imaging was applied using a Ciclops 3D scanner. The best fitting sphere model was generated using the 3D model. The most optimal model was the 3D model, which gave the best representation and provided the weight of the tomatoes with a relative error of 21.90 % and a standard deviation of 17.9665 %. The results indicate a consistent object-based classification of the tomato crop above the plant/row level with an accuracy of 55.33 %, which is better than in-row sampling (images taken by the robot). By comparing the measured and estimated yield, the average difference for DSLR camera images was more favorable at 3.42 kg.

摘要

本研究的目的是使用自行研发的机器人和数码单反(DSLR)相机拍摄的照片来估算田间种植的番茄产量(重量)和番茄数量。作者提出了一种基于田间拍摄的图像、3D扫描和形状来预测番茄产量的新方法。田间照片用于番茄分割,以确定作物的成熟度。利用TensorFlow库设计了一个卷积神经网络(CNN)模型,用于与一个小型机器人一起对番茄果实进行分割,该模型的F1分数为59.3%。为了改进精确的番茄作物模型并随后估算产量,使用Ciclops 3D扫描仪进行了点云成像。利用3D模型生成了最佳拟合球体模型。最优模型是3D模型,它给出了最佳表示,并以21.90%的相对误差和17.9665的标准差提供了番茄的重量。结果表明,在植株/行水平以上对番茄作物进行基于对象的分类具有55.33%的准确率,这比行内采样(机器人拍摄的图像)要好。通过比较实测产量和估算产量,数码单反相机图像的平均差异更有利,为3.42千克。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243f/11619985/cca898dee4ee/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验