Suppr超能文献

基于深度学习的 TCN 和 RNN 结合的温室作物产量预测

Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN.

机构信息

School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK.

Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN6 7TS, UK.

出版信息

Sensors (Basel). 2021 Jul 1;21(13):4537. doi: 10.3390/s21134537.

Abstract

Currently, greenhouses are widely applied for plant growth, and environmental parameters can also be controlled in the modern greenhouse to guarantee the maximum crop yield. In order to optimally control greenhouses' environmental parameters, one indispensable requirement is to accurately predict crop yields based on given environmental parameter settings. In addition, crop yield forecasting in greenhouses plays an important role in greenhouse farming planning and management, which allows cultivators and farmers to utilize the yield prediction results to make knowledgeable management and financial decisions. It is thus important to accurately predict the crop yield in a greenhouse considering the benefits that can be brought by accurate greenhouse crop yield prediction. In this work, we have developed a new greenhouse crop yield prediction technique, by combining two state-of-the-arts networks for temporal sequence processing-temporal convolutional network (TCN) and recurrent neural network (RNN). Comprehensive evaluations of the proposed algorithm have been made on multiple datasets obtained from multiple real greenhouse sites for tomato growing. Based on a statistical analysis of the root mean square errors (RMSEs) between the predicted and actual crop yields, it is shown that the proposed approach achieves more accurate yield prediction performance than both traditional machine learning methods and other classical deep neural networks. Moreover, the experimental study also shows that the historical yield information is the most important factor for accurately predicting future crop yields.

摘要

目前,温室被广泛应用于植物生长,现代温室中的环境参数也可以得到控制,以保证作物产量最大化。为了最优控制温室的环境参数,一个不可或缺的要求是根据给定的环境参数设置准确预测作物产量。此外,温室作物产量预测在温室种植规划和管理中起着重要作用,它使种植者和农民能够利用产量预测结果做出明智的管理和财务决策。因此,考虑到准确的温室作物产量预测可以带来的好处,准确预测温室中的作物产量是很重要的。在这项工作中,我们结合了两种最先进的时间序列处理网络——时间卷积网络(TCN)和递归神经网络(RNN),开发了一种新的温室作物产量预测技术。我们在多个番茄种植的真实温室站点获得的多个数据集上对所提出的算法进行了综合评估。通过对预测和实际作物产量之间的均方根误差(RMSE)的统计分析表明,与传统的机器学习方法和其他经典的深度神经网络相比,所提出的方法具有更准确的产量预测性能。此外,实验研究还表明,历史产量信息是准确预测未来作物产量的最重要因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验