Long Chao, Liu Zuwen, Liu Renlu, Yin Li, Tan Fuxing, Wang Yian, He Genhe
School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, Jiangxi, China.
School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China.
Front Microbiol. 2024 Nov 21;15:1480484. doi: 10.3389/fmicb.2024.1480484. eCollection 2024.
Soil acidification poses a significant environmental challenge in China's southern red soil regions, impacting the abundance of soil microbes and their capacity for carbon fixation. The effect of vegetation types on soil's biological and abiotic components under acidification, and their regulatory role on the CO fixation mechanisms of soil autotrophic microorganisms, is difficult to examine. This gap in understanding constrains the assessment of the carbon fixation potential of red soils. To address this, indoor cultivation coupled with C stable isotope labeling was employed to evaluate the disparate abilities of autotrophic microorganisms to assimilate and store CO across five vegetation soils from the Qianyanzhou acidic red soil experimental station in China. Findings indicate that carbon fixation rates in these soils spanned from 4.25 to 18.15 mg C kg soil d, with paddy field soils demonstrating superior carbon fixation capabilities compared to orchard, coniferous forest, broad-leaved forest, and wasteland soils. The C fixation rate in the 0-10 cm soil stratum surpassed that of the 10-30 cm layer across all vegetation types. High-throughput sequencing of 16S rRNA, following gene purification and amplification, identified , , , , and as the predominant autotrophic carbon-fixing microbial genera in the soil. PERMANOVA analysis attributed 65.72% of the variance in microbial community composition to vegetation type, while soil depth accounted for a mere 8.58%. Network analysis of microbial co-occurrence suggested the soil microbial interactions and network complexity changed with the change of vegetation types. Additionally, multiple linear regression analysis pinpointed the Shannon index and soil organic carbon (SOC) content as primary influencers of carbon fixation rates. Structural equation modeling suggested that iron enrichment and acidification indirectly modulated carbon fixation rates by altering SOC and autotrophic bacterial diversity. This investigation shows the spatial dynamics and mechanisms underpinning microbial carbon fixation across varying vegetation types in southern China's red soil regions.
土壤酸化在中国南方红壤地区构成了重大的环境挑战,影响土壤微生物的丰度及其固碳能力。酸化条件下植被类型对土壤生物和非生物成分的影响,以及它们对土壤自养微生物固碳机制的调节作用,难以进行研究。这种认知上的差距限制了对红壤固碳潜力的评估。为解决这一问题,采用室内培养结合碳稳定同位素标记的方法,评估了中国千烟洲酸性红壤实验站五种植被土壤中自养微生物同化和储存二氧化碳的不同能力。研究结果表明,这些土壤的固碳速率在4.25至18.15毫克碳/千克土壤·天之间,稻田土壤的固碳能力优于果园、针叶林、阔叶林和荒地土壤。在所有植被类型中,0-10厘米土层的固碳速率均超过10-30厘米土层。对16S rRNA进行基因纯化和扩增后的高通量测序,确定了 、 、 、 和 为土壤中主要的自养固碳微生物属。PERMANOVA分析表明,微生物群落组成65.72%的变异归因于植被类型,而土壤深度仅占8.58%。微生物共现网络分析表明,土壤微生物相互作用和网络复杂性随植被类型的变化而改变。此外,多元线性回归分析指出,香农指数和土壤有机碳(SOC)含量是固碳速率的主要影响因素。结构方程模型表明,铁富集和酸化通过改变SOC和自养细菌多样性间接调节固碳速率。本研究揭示了中国南方红壤地区不同植被类型下微生物碳固定的空间动态和机制。