Suppr超能文献

LocoMote:用于细粒度水下定位与传感的人工智能驱动传感器标签

LocoMote: AI-driven Sensor Tags for Fine-Grained Undersea Localization and Sensing.

作者信息

Saha Swapnil Sayan, Davis Caden, Sandha Sandeep Singh, Park Junha, Geronimo Joshua, Garcia Luis Antonio, Srivastava Mani

机构信息

STMicroelectronics Inc., Santa Clara, CA 95054, USA (work unrelated to STMicroelectronics Inc.).

Dept. of Electrical and Computer Engineering and the Dept. of Computer Science, University of California - Los Angeles, Los Angeles, CA 90095, USA.

出版信息

IEEE Sens J. 2024 May 15;24(10):16999-17018. doi: 10.1109/jsen.2024.3383721. Epub 2024 Apr 5.

Abstract

Long-term and fine-grained maritime localization and sensing is challenging due to sporadic connectivity, constrained power budget, limited footprint, and hostile environment. In this paper, we present the design considerations and implementation of , a rugged ultra-low-footprint undersea sensor tag with on-device AI-driven localization, online communication, and energy-harvesting capabilities. uses on-chip (< 30 kB) neural networks to track underwater objects within 3 meters with 6 minutes of GPS outage from 9DoF inertial sensor readings. The tag streams data at 2-5 kbps (< 10 bit error rate) using piezo-acoustic ultrasonics, achieving underwater communication range of more than 50 meters while allowing up to 55 nodes to concurrently stream via randomized time-division multiple access. To recharge the battery during sleep, the tag uses an aluminum-air salt water energy harvesting system, generating upto 5 mW of power. is ultra-lightweight (< 50 grams), tiny (32×32×10 mm), consumes low power ( 330 mW peak), and comes with a suite of high-resolution sensors. We highlight the hardware and software design decisions, implementation lessons, and the real-world performance of our tag versus existing oceanic sensing technologies.

摘要

由于间歇性连接、受限的功率预算、有限的占用空间以及恶劣的环境,长期且细粒度的海上定位与传感具有挑战性。在本文中,我们介绍了一种坚固的超小尺寸水下传感器标签的设计考量与实现,该标签具备设备上人工智能驱动的定位、在线通信以及能量收集能力。该标签使用片上(<30 kB)神经网络,根据9自由度惯性传感器读数,在GPS中断约6分钟的情况下,跟踪3米范围内的水下物体。该标签使用压电超声以2 - 5 kbps(误码率<10%)的速率传输数据,实现超过50米的水下通信范围,同时允许多达55个节点通过随机时分多址并发传输。为了在睡眠期间给电池充电,该标签使用铝 - 空气盐水能量收集系统,可产生高达5 mW的功率。该标签超轻(<50克)、体积微小(32×32×10毫米)、功耗低(峰值约330 mW),并配备了一套高分辨率传感器。我们重点介绍了该标签的硬件和软件设计决策、实现经验以及与现有海洋传感技术相比的实际性能。

相似文献

3
5
TinyOdom: Hardware-Aware Efficient Neural Inertial Navigation.TinyOdom:硬件感知高效神经惯性导航。
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2022 Jul;6(2). doi: 10.1145/3534594. Epub 2022 Jul 7.
9
Energy scavenging for long-term deployable wireless sensor networks.面向长期可部署无线传感器网络的能量收集
Talanta. 2008 May 15;75(3):613-23. doi: 10.1016/j.talanta.2007.12.021. Epub 2007 Dec 26.

本文引用的文献

1
TinyOdom: Hardware-Aware Efficient Neural Inertial Navigation.TinyOdom:硬件感知高效神经惯性导航。
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2022 Jul;6(2). doi: 10.1145/3534594. Epub 2022 Jul 7.
3
Wearable sensors for monitoring marine environments and their inhabitants.用于监测海洋环境及其生物的可穿戴传感器。
Nat Biotechnol. 2023 Sep;41(9):1208-1220. doi: 10.1038/s41587-023-01827-3. Epub 2023 Jun 26.
4
Machine Learning for Microcontroller-Class Hardware: A Review.用于微控制器类硬件的机器学习:综述
IEEE Sens J. 2022 Nov 15;22(22):21362-21390. doi: 10.1109/jsen.2022.3210773. Epub 2022 Oct 5.
5
Battery-free wireless imaging of underwater environments.无电池的水下环境无线成像。
Nat Commun. 2022 Sep 26;13(1):5546. doi: 10.1038/s41467-022-33223-x.
7
Wind dispersal of battery-free wireless devices.无电池无线设备的风力传播。
Nature. 2022 Mar;603(7901):427-433. doi: 10.1038/s41586-021-04363-9. Epub 2022 Mar 16.
9
Animal tag technology keeps coming of age: an engineering perspective.动物标签技术不断成熟:工程视角。
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200229. doi: 10.1098/rstb.2020.0229. Epub 2021 Jun 28.
10
A decade to study deep-sea life.十年时间用于研究深海生物。
Nat Ecol Evol. 2021 Mar;5(3):265-267. doi: 10.1038/s41559-020-01352-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验