Saha Swapnil Sayan, Sandha Sandeep Singh, Garcia Luis Antonio, Srivastava Mani
University of California - Los Angeles, USA.
University of Southern California, USA.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2022 Jul;6(2). doi: 10.1145/3534594. Epub 2022 Jul 7.
Deep inertial sequence learning has shown promising odometric resolution over model-based approaches for trajectory estimation in GPS-denied environments. However, existing neural inertial dead-reckoning frameworks are not suitable for real-time deployment on ultra-resource-constrained (URC) devices due to substantial memory, power, and compute bounds. Current deep inertial odometry techniques also suffer from gravity pollution, high-frequency inertial disturbances, varying sensor orientation, heading rate singularity, and failure in altitude estimation. In this paper, we introduce TinyOdom, a framework for training and deploying neural inertial models on URC hardware. TinyOdom exploits hardware and quantization-aware Bayesian neural architecture search (NAS) and a temporal convolutional network (TCN) backbone to train lightweight models targetted towards URC devices. In addition, we propose a magnetometer, physics, and velocity-centric sequence learning formulation robust to preceding inertial perturbations. We also expand 2D sequence learning to 3D using a model-free barometric g-h filter robust to inertial and environmental variations. We evaluate TinyOdom for a wide spectrum of inertial odometry applications and target hardware against competing methods. Specifically, we consider four applications: pedestrian, animal, aerial, and underwater vehicle dead-reckoning. Across different applications, TinyOdom reduces the size of neural inertial models by 31× to 134× with 2.5m to 12m error in 60 seconds, enabling the direct deployment of models on URC devices while still maintaining or exceeding the localization resolution over the state-of-the-art. The proposed barometric filter tracks altitude within ±0.1 and is robust to inertial disturbances and ambient dynamics. Finally, our ablation study shows that the introduced magnetometer, physics, and velocity-centric sequence learning formulation significantly improve localization performance even with notably lightweight models.
在GPS信号缺失的环境中进行轨迹估计时,深度惯性序列学习在里程计分辨率方面比基于模型的方法更具潜力。然而,由于存在大量内存、功率和计算限制,现有的神经惯性航位推算框架不适用于超资源受限(URC)设备的实时部署。当前的深度惯性里程计技术还存在重力污染、高频惯性干扰、传感器方向变化、航向率奇异性以及海拔估计失败等问题。在本文中,我们介绍了TinyOdom,这是一个用于在URC硬件上训练和部署神经惯性模型的框架。TinyOdom利用硬件和量化感知贝叶斯神经架构搜索(NAS)以及时间卷积网络(TCN)骨干来训练针对URC设备的轻量级模型。此外,我们提出了一种以磁力计、物理和速度为中心的序列学习公式,该公式对先前的惯性扰动具有鲁棒性。我们还使用对惯性和环境变化具有鲁棒性的无模型气压g-h滤波器将二维序列学习扩展到三维。我们针对各种惯性里程计应用和目标硬件,将TinyOdom与竞争方法进行了评估。具体来说,我们考虑了四种应用:行人、动物、空中和水下航行器的航位推算。在不同的应用中,TinyOdom将神经惯性模型的大小缩小了31倍至134倍,在60秒内的误差为2.5米至12米,能够在URC设备上直接部署模型,同时仍保持或超过现有技术的定位分辨率。所提出的气压滤波器将海拔跟踪在±0.1以内,并且对惯性干扰和环境动态具有鲁棒性。最后,我们的消融研究表明,即使使用非常轻量级的模型,引入的以磁力计、物理和速度为中心的序列学习公式也能显著提高定位性能。