Suppr超能文献

对 bulk-blood RNA-seq 的细胞类型去卷积揭示了神经精神疾病的生物学见解。

Cell-type deconvolution of bulk-blood RNA-seq reveals biological insights into neuropsychiatric disorders.

机构信息

Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.

Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

Am J Hum Genet. 2024 Feb 1;111(2):323-337. doi: 10.1016/j.ajhg.2023.12.018.

Abstract

Genome-wide association studies (GWASs) have uncovered susceptibility loci associated with psychiatric disorders such as bipolar disorder (BP) and schizophrenia (SCZ). However, most of these loci are in non-coding regions of the genome, and the causal mechanisms of the link between genetic variation and disease risk is unknown. Expression quantitative trait locus (eQTL) analysis of bulk tissue is a common approach used for deciphering underlying mechanisms, although this can obscure cell-type-specific signals and thus mask trait-relevant mechanisms. Although single-cell sequencing can be prohibitively expensive in large cohorts, computationally inferred cell-type proportions and cell-type gene expression estimates have the potential to overcome these problems and advance mechanistic studies. Using bulk RNA-seq from 1,730 samples derived from whole blood in a cohort ascertained from individuals with BP and SCZ, this study estimated cell-type proportions and their relation with disease status and medication. For each cell type, we found between 2,875 and 4,629 eGenes (genes with an associated eQTL), including 1,211 that are not found on the basis of bulk expression alone. We performed a colocalization test between cell-type eQTLs and various traits and identified hundreds of associations that occur between cell-type eQTLs and GWASs but that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on the regulation of cell-type expression loci and found examples of genes that are differentially regulated according to lithium use. Our study suggests that applying computational methods to large bulk RNA-seq datasets of non-brain tissue can identify disease-relevant, cell-type-specific biology of psychiatric disorders and psychiatric medication.

摘要

全基因组关联研究(GWAS)已经发现了与精神疾病(如双相情感障碍(BP)和精神分裂症(SCZ))相关的易感基因座。然而,这些基因座大多数位于基因组的非编码区域,遗传变异与疾病风险之间的因果机制尚不清楚。对大量组织进行表达数量性状基因座(eQTL)分析是一种用于破译潜在机制的常用方法,尽管这可能会掩盖细胞类型特异性信号,从而掩盖与特征相关的机制。尽管在大型队列中单细胞测序可能成本过高,但计算推断的细胞类型比例和细胞类型基因表达估计值有可能克服这些问题并推进机制研究。本研究使用来自 BP 和 SCZ 个体队列中全血衍生的 1730 个样本的批量 RNA-seq,估计了细胞类型比例及其与疾病状态和药物治疗的关系。对于每种细胞类型,我们发现了 2875 到 4629 个 eGenes(具有相关 eQTL 的基因),其中包括仅基于批量表达未发现的 1211 个 eGenes。我们在细胞类型 eQTL 和各种性状之间进行了 colocalization 测试,并鉴定了数百个与细胞类型 eQTL 和 GWAS 之间发生的关联,但在批量 eQTL 中未检测到。最后,我们研究了锂使用对细胞类型表达位点调控的影响,并发现了根据锂使用情况差异调控的基因的例子。我们的研究表明,应用计算方法对非脑组织的大型批量 RNA-seq 数据集进行分析,可以确定精神疾病和精神药物治疗相关的、具有细胞类型特异性的生物学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d8f/10870131/83f23727c0de/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验