Suppr超能文献

用于大米中总无机砷检测的高效伏安分析,具有增强的灵敏度和选择性。

Efficient voltammetric analysis for total inorganic arsenic detection in rice with enhanced sensitivity and selectivity.

作者信息

Tian Wei, Guo Jiawei, Wang Songxue, Zhou Minghui, He Yingjie, Xi Xingjun, Chen Xi, Wang Yue, Wu Yanxiang, Zhang Jieqiong

机构信息

Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.

China National Institute of Standardization, Beijing 100191, China.

出版信息

Food Chem X. 2024 Nov 14;24:102003. doi: 10.1016/j.fochx.2024.102003. eCollection 2024 Dec 30.

Abstract

A rapid, simple, and accurate voltammetric method for quantifying total inorganic arsenic in rice was described in this work. The simplified sample pretreatment involved the addition of a mixed solution of nitric acid and L-cysteine, which facilitated the simultaneous extraction and speciation of arsenic (As(III)). To eliminate interference from complex rice matrices, magnetic composites were employed to absorb copper and other potential interference. Furthermore, As(III) was detected using linear stripping voltammetry with screen-printed electrodes modified in-situ with gold nanoparticles and L-cysteine, enhancing both sensitivity and selectivity. With this strategy, the methodology demonstrated good resistance to interference and high sensitivity, with a detection limit of 0.018 mg/kg. A comparative analysis between this method and liquid chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS) showed a good correlation with an R of 0.995. Additionally, the method was successfully applied to determine total inorganic arsenic in commercial rice samples, yielding satisfactory results.

摘要

本研究描述了一种快速、简单且准确的伏安法,用于定量测定大米中的总无机砷。简化的样品预处理包括加入硝酸和L-半胱氨酸的混合溶液,这有助于同时提取砷(As(III))并进行形态分析。为消除复杂大米基质的干扰,采用磁性复合材料吸附铜和其他潜在干扰物。此外,使用线性扫描伏安法检测As(III),采用金纳米粒子和L-半胱氨酸原位修饰的丝网印刷电极,提高了灵敏度和选择性。采用该策略,该方法显示出良好的抗干扰能力和高灵敏度,检测限为0.018 mg/kg。该方法与液相色谱-电感耦合等离子体质谱法(ICP-MS)的对比分析显示,两者具有良好的相关性,相关系数R为0.995。此外,该方法成功应用于测定市售大米样品中的总无机砷,结果令人满意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验