Ayako Rebeccah M, Patel Kirtika, Ndede Isaac, Nordgren Johan, Larrson Marie, Mining Simeon K
Department of Pathology, Moi University, Eldoret, Kenya.
Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden.
Immun Inflamm Dis. 2024 Dec;12(12):e70078. doi: 10.1002/iid3.70078.
There are few accurate prognostic indications of the illness's development and severity for COVID-19, despite certain biomarkers having been investigated. The unexpected nature of COVID-19's course, which can quickly progress from asymptomatic to life-threatening symptoms, lies at the heart of the disease's intricacy. Predicting SARS-CoV-2 pathogenicity through laboratory biomarkers and as such, identifying the patients' illness severity at the time of their initial admission would be crucial in improving patient care. In this study, we sought to evaluate the potential of hematological, biochemical, and inflammatory biomarkers in predicting the course of COVID-19 at a tertiary hospital in western Kenya.
This cross-sectional study involved 48 COVID-19 patients (16 asymptomatic; 16 moderate symptomatic; and 16 severe symptomatic) and 48 age-sex-matched COVID-19-negative clients attending the Moi Teaching and Referral Hospital, Kenya. Demographic information, self-reported chronic illnesses, symptoms, and laboratory results were collected at recruitment.
Significantly, the severity of COVID-19 was associated with; hemoglobin (p < 0.0001), white blood cells (p = 0.0022), hematocrit (p < 0.0001), blood urea nitrogen (p = 0.01), blood sodium (p = 0.0002), potassium (p = 0.0483), C-reactive protein (p = 0.0002), and Lactate Dehydrogenase (p < 0.0001). Regression analysis of CRP revealed a strong positive correlation (p = 0.0006) whereas LDH revealed a weak positive correlation (p < 0.0001) with COVID-19 disease severity. Discriminative accuracy was highest when asymptomatic was compared to severe COVID-19 for CRP and LDH (AUC: 0.8867, 95% CI: 0.7532-1.000) and (AUC: 1.000, 95% CI: 1.000-1.000) respectively.
The hematological indices, inflammatory and biochemical biomarkers studied have the potential to predict the course of COVID-19. These parameters may be useful in helping design appropriate care for COVID-19 patients.
尽管已经对某些生物标志物进行了研究,但对于新冠病毒病(COVID-19)病情发展和严重程度的准确预后指标仍然很少。COVID-19病程的意外性,即能迅速从无症状进展为危及生命的症状,是该疾病复杂性的核心所在。通过实验室生物标志物预测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的致病性,进而在患者初次入院时确定其病情严重程度,对于改善患者护理至关重要。在本研究中,我们试图评估血液学、生化和炎症生物标志物在肯尼亚西部一家三级医院预测COVID-19病程的潜力。
这项横断面研究纳入了48例COVID-19患者(16例无症状;16例中度症状;16例重度症状)以及48例年龄和性别匹配的COVID-19阴性患者,这些患者均前往肯尼亚莫伊教学和转诊医院就诊。在招募时收集了人口统计学信息、自我报告的慢性病、症状和实验室检查结果。
值得注意的是,COVID-19的严重程度与以下指标相关:血红蛋白(p < 0.0001)、白细胞(p = 0.0022)、血细胞比容(p < 0.0001)、血尿素氮(p = 0.01)、血钠(p = 0.0002)、血钾(p = 0.0483)、C反应蛋白(p = 0.0002)和乳酸脱氢酶(p < 0.0001)。C反应蛋白的回归分析显示与COVID-19疾病严重程度呈强正相关(p = 0.0006),而乳酸脱氢酶呈弱正相关(p < 0.0001)。将无症状患者与重度COVID-19患者进行比较时,C反应蛋白和乳酸脱氢酶的判别准确性最高,其曲线下面积(AUC)分别为0.8867,95%置信区间(CI):0.7532 - 1.000和AUC:1.000,95%CI:1.000 - 1.000。
所研究的血液学指标、炎症和生化生物标志物具有预测COVID-19病程的潜力。这些参数可能有助于为COVID-19患者设计适当的护理方案。