Harte John, Brush Micah, Umemura Kaito, Muralikrishnan Pranav, Newman Erica A
The Energy and Resources Group, University of California, Berkeley, CA 94720.
The Rocky Mountain Biological Laboratory, Gothic, CO 81224.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2408676121. doi: 10.1073/pnas.2408676121. Epub 2024 Dec 6.
In many complex systems encountered in the natural and social sciences, mechanisms governing system dynamics at a microscale depend upon the values of state variables characterizing the system at coarse-grained, macroscale (Goldenfeld and Woese, 2011, Noble et al., 2019, and Chater and Loewenstein, 2023). State variables, in turn, are averages over relevant probability distributions of the microscale variables. Neither inferential nor mechanistic modeling alone can predict responses of such scale-entwined systems to perturbations. We describe and explore the properties of a dynamic theory that combines information-theoretic inference with , state-variable-dependent mechanisms. The theory predicts the functional form of nonstationary probability distributions over microvariables and relates the trajectories of time-evolving macrovariables to the form of those distributions. Analytic expressions for the time evolution of Lagrange multipliers from Maxent solutions allow for rapid calculation of the time trajectories of state variables even in high dimensional systems. Examples of possible applications to scale-entwined systems in nonequilibrium chemical thermodynamics, epidemiology, economics, and ecology exemplify the potential multidisciplinary scope of the theory. A worked-out low-dimension example illustrates the structure of the theory and demonstrates how scale entwinement can result in slowed recovery from perturbations, reddened time series spectra in response to white-noise input, and hysteresis upon parameter displacement and subsequent restoration.
在自然科学和社会科学中遇到的许多复杂系统中,微观尺度上控制系统动态的机制取决于在粗粒度宏观尺度上表征系统的状态变量的值(戈尔登菲尔德和沃斯,2011年;诺布尔等人,2019年;查特和洛温斯坦,2023年)。反过来,状态变量是微观尺度变量相关概率分布的平均值。单独的推理建模和机制建模都无法预测此类尺度纠缠系统对扰动的响应。我们描述并探索一种动态理论的性质,该理论将信息论推理与依赖于状态变量的机制相结合。该理论预测微观变量上非平稳概率分布的函数形式,并将随时间演化的宏观变量的轨迹与这些分布的形式联系起来。来自最大熵解的拉格朗日乘子的时间演化的解析表达式允许即使在高维系统中也能快速计算状态变量的时间轨迹。在非平衡化学热力学、流行病学、经济学和生态学中可能应用于尺度纠缠系统的例子例证了该理论潜在的多学科范围。一个详细的低维例子说明了该理论的结构,并展示了尺度纠缠如何导致从扰动中恢复缓慢、响应白噪声输入时时间序列光谱变红以及参数位移和随后恢复时的滞后现象。