Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands.
Janelia Research Campus, HHMI, Ashburn, VA 20147.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2318805121. doi: 10.1073/pnas.2318805121. Epub 2024 Jul 31.
How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm , we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining. We translate these dynamics into movement using resistive force theory, capturing the statistical properties of foraging trajectories. Predictive across scales, we leverage the longest-lived eigenvectors of the inferred Markov chain to perform a top-down subdivision of the worm's foraging behavior, revealing both "runs-and-pirouettes" as well as previously uncharacterized finer-scale behaviors. We use our model to investigate the relevance of these fine-scale behaviors for foraging success, recovering a trade-off between local and global search strategies.
我们如何捕捉动物运动中的行为广度,从快速的身体抽搐到衰老?通过使用线虫的高分辨率视频,我们表明,单一动力学将姿势尺度波动与轨迹扩散和寿命更长的行为状态联系起来。我们将短姿势序列作为瞬时行为测量,固定序列长度以获得最大预测。在姿势序列空间中,我们构建一个精细的最大熵分区,使得微状态之间的转变定义了一个高精度的马尔可夫模型,我们也将其用作有原则的粗化的一种手段。我们使用阻力理论将这些动力学转化为运动,捕捉觅食轨迹的统计特性。在跨尺度上进行预测,我们利用推断出的马尔可夫链的最长寿命本征向量来对蠕虫的觅食行为进行自上而下的细分,揭示了“奔跑和旋转”以及以前未被描述的更精细的行为。我们使用我们的模型来研究这些精细行为对觅食成功的相关性,发现局部和全局搜索策略之间存在权衡。