BCAM - Basque Center for Applied Mathematics, Bilbao, Spain.
IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
Nat Commun. 2023 Jun 23;14(1):3685. doi: 10.1038/s41467-023-39107-y.
Most natural systems operate far from equilibrium, displaying time-asymmetric, irreversible dynamics characterized by a positive entropy production while exchanging energy and matter with the environment. Although stochastic thermodynamics underpins the irreversible dynamics of small systems, the nonequilibrium thermodynamics of larger, more complex systems remains unexplored. Here, we investigate the asymmetric Sherrington-Kirkpatrick model with synchronous and asynchronous updates as a prototypical example of large-scale nonequilibrium processes. Using a path integral method, we calculate a generating functional over trajectories, obtaining exact solutions of the order parameters, path entropy, and steady-state entropy production of infinitely large networks. Entropy production peaks at critical order-disorder phase transitions, but is significantly larger for quasi-deterministic disordered dynamics. Consequently, entropy production can increase under distinct scenarios, requiring multiple thermodynamic quantities to describe the system accurately. These results contribute to developing an exact analytical theory of the nonequilibrium thermodynamics of large-scale physical and biological systems and their phase transitions.
大多数自然系统在远离平衡的情况下运行,表现出时间不对称、不可逆的动力学特征,其熵产生为正,同时与环境交换能量和物质。尽管随机热力学为小系统的不可逆动力学提供了基础,但更大、更复杂系统的非平衡热力学仍未得到探索。在这里,我们研究了具有同步和异步更新的对称 Sherrington-Kirkpatrick 模型,作为大规模非平衡过程的典型范例。我们使用路径积分方法,在轨迹上计算生成泛函,得到无限大网络的序参量、路径熵和稳态熵产生的精确解。熵产生在临界有序-无序相变时达到峰值,但对于准确定性无序动力学则显著更大。因此,在不同的情况下,熵产生可以增加,需要多个热力学量来准确描述系统。这些结果有助于为大规模物理和生物系统及其相变的非平衡热力学建立精确的分析理论。