Suppr超能文献

拉普拉斯引导的分层变压器:一种用于医学图像分割的网络。

Laplacian-guided hierarchical transformer: A network for medical image segmentation.

作者信息

Chen Yuxiao, Su Diwei, Luo Jianxu

机构信息

East China University of Science and Technology, Shanghai, China.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108526. doi: 10.1016/j.cmpb.2024.108526. Epub 2024 Nov 30.

Abstract

BACKGROUND AND OBJECTIVE

Accurate medical image segmentation is crucial for diagnosis and treatment planning, particularly in tumor localization and organ measurement. Despite the success of Transformer models in various domains, they still struggle to capture high-frequency features, limiting their performance in medical image segmentation, especially in edge texture extraction. To overcome this limitation and improve segmentation accuracy, this study proposes a novel model architecture aimed at enhancing the Transformer's ability to capture and integrate both high-frequency and low-frequency features.

METHODS

Our model combines the extraction of high-frequency features using a Laplacian pyramid with the capture of low-frequency features through a Local-Global Feature Aggregation Module. A Feature Interaction Fusion module is employed to integrate these features, focusing on target areas. Additionally, a new bridging module facilitates the transfer of spatial information between the encoder and decoder via layer-wise attention mechanisms. The model's performance was evaluated using the Synapse dataset with statistical measures such as the Dice Similarity Coefficient and Hausdorff Distance. The code is available at https://github.com/chenyuxiao123/LGHF.

RESULTS

The proposed model demonstrated state-of-the-art performance in 2D medical image segmentation, achieving a Dice Similarity Coefficient of 84.10% and a Hausdorff Distance of 12.78. The evaluation metrics indicate significant improvements compared to existing methods.

CONCLUSION

This novel model architecture, with its enhanced capability to capture and integrate both high-frequency and low-frequency features, shows significant potential for advancing medical image segmentation. The results on the Synapse dataset demonstrate its effectiveness and suggest its application could improve diagnosis and treatment planning in clinical settings.

摘要

背景与目的

准确的医学图像分割对于诊断和治疗规划至关重要,尤其是在肿瘤定位和器官测量方面。尽管Transformer模型在各个领域都取得了成功,但它们在捕捉高频特征方面仍存在困难,这限制了它们在医学图像分割中的性能,特别是在边缘纹理提取方面。为了克服这一限制并提高分割精度,本研究提出了一种新颖的模型架构,旨在增强Transformer捕捉和整合高频与低频特征的能力。

方法

我们的模型将使用拉普拉斯金字塔提取高频特征与通过局部-全局特征聚合模块捕捉低频特征相结合。采用特征交互融合模块来整合这些特征,重点关注目标区域。此外,一个新的桥接模块通过逐层注意力机制促进编码器和解码器之间的空间信息传递。使用Synapse数据集,通过诸如骰子相似系数和豪斯多夫距离等统计指标对模型性能进行评估。代码可在https://github.com/chenyuxiao123/LGHF获取。

结果

所提出的模型在二维医学图像分割中表现出了领先的性能,骰子相似系数达到84.10%,豪斯多夫距离为12.78。评估指标表明与现有方法相比有显著改进。

结论

这种新颖的模型架构具有增强的捕捉和整合高频与低频特征的能力,在推进医学图像分割方面显示出巨大潜力。在Synapse数据集上的结果证明了其有效性,并表明其应用可以改善临床环境中的诊断和治疗规划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验