Edouard Paul, Campo David
Withings, 2 rue Maurice Hartmann, Issy-les-Moulineaux, 92130, France.
Withings, 2 rue Maurice Hartmann, Issy-les-Moulineaux, 92130, France.
Comput Biol Med. 2025 Feb;185:109407. doi: 10.1016/j.compbiomed.2024.109407. Epub 2024 Dec 5.
Atrial Fibrillation (AF) is the most common form of arrhythmia in the world with a prevalence of 1%-2%. AF is also associated with an increased risk of cardiovascular diseases (CVD), such as stroke, heart failure, and coronary artery diseases, making it a leading cause of death. Asymptomatic patients are a common case (30%-40%). This highlights the importance of early diagnosis or screening. Wearable and home devices offer new opportunities in this regard.
We present WECG-SW2, a lightweight algorithm that classifies 30-second lead I ECG strips as 'NSR', 'AF', 'Other' or 'Noise'. By detecting the location of QRS complexes in the signal, the information can be organized into a low dimensionality input which is fed to a tiny Convolutional Neural Network (CNN) with only 3,633 parameters. This approach allows for the algorithm to run directly on the ECG acquisition devices, and improves accuracy by making the most out of the training set.
WECG-SW2 was evaluated on a database which combines three clinical studies sponsored by Withings with three hardware devices, as well as the MIT-BIH Arrhythmia Database. On the proprietary clinical database, the sensitivity and specificity of AF detection were 99.63% (95% CI: 99.15-99.84) and 99.85% (95% CI: 99.61-99.94), respectively, based on 4646 strips taken from 1441 participants. On the MIT-BIH Arrhythmia Database, the sensitivity and specificity were 99.87% (95% CI: 99.53, 99.98) and 100% (95% CI: 98.31, 100.0), respectively, across 2624 analyzed segments.
WECG-SW2 demonstrates high sensitivity and specificity in the detection of AF using a wide variety of ECG recording hardware. The binary of WECG-SW2 is available upon request to the corresponding author for research purposes.
心房颤动(AF)是全球最常见的心律失常形式,患病率为1%-2%。AF还与心血管疾病(CVD)风险增加相关,如中风、心力衰竭和冠状动脉疾病,使其成为主要死因。无症状患者很常见(30%-40%)。这凸显了早期诊断或筛查的重要性。可穿戴设备和家用设备在这方面提供了新机会。
我们展示了WECG-SW2,一种轻量级算法,可将30秒的I导联心电图条分类为“正常窦性心律(NSR)”、“AF”、“其他”或“噪声”。通过检测信号中QRS波群的位置,信息可被组织成低维输入,该输入被馈送到一个仅有3633个参数的微型卷积神经网络(CNN)。这种方法允许算法直接在心电图采集设备上运行,并通过充分利用训练集提高准确性。
WECG-SW2在一个数据库上进行了评估,该数据库结合了由Withings赞助的三项临床研究以及三种硬件设备,还有麻省理工学院-比哈尔心律失常数据库。在专有临床数据库上,基于从1441名参与者获取的4646条心电图条,AF检测的敏感性和特异性分别为99.63%(95%置信区间:99.15-99.84)和99.85%(95%置信区间:99.61-99.94)。在麻省理工学院-比哈尔心律失常数据库上,在2624个分析段中,敏感性和特异性分别为99.87%(95%置信区间:99.53,99.98)和100%(95%置信区间:98.31,100.0)。
WECG-SW2在使用各种心电图记录硬件检测AF方面表现出高敏感性和特异性。WECG-SW2的二进制文件可应通讯作者要求提供用于研究目的。