Suppr超能文献

评估心脏病学中人工智能辅助医学检测:最佳实践。

Evaluating artificial intelligence-enabled medical tests in cardiology: Best practice.

作者信息

Isaksen Jonas L, Nørregaard Malene, Manninger Martin, Dobrev Dobromir, Jespersen Thomas, Hermans Ben, Heijman Jordi, Plank Gernot, Scherr Daniel, Pock Thomas, Thambawita Vajira, Riegler Michael A, Kanters Jørgen K, Linz Dominik

机构信息

Laboratory of Experimental Cardiology, University of Copenhagen, Copenhagen, Denmark.

Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.

出版信息

Int J Cardiol Heart Vasc. 2025 Aug 30;60:101783. doi: 10.1016/j.ijcha.2025.101783. eCollection 2025 Oct.

Abstract

Machine learning methods are increasingly used in cardiovascular research. In order to highlight opportunities and challenges of the evaluation of studies applying machine learning, we use examples from cardiac electrophysiology, a field characterized by large and often imbalanced amounts of data. We provide recommendations and guidance on evaluating and presenting supervised machine learning studies. We recommend proper cohort selection, keeping training and testing data strictly separate, and comparing results to a reference model without machine learning as basic principles to ensure the quality of studies using machine learning methods. We furthermore recommend specific metrics and plots when reporting on machine learning including on models for multi-channel time series or images. This Best Practice paper represents a possible blueprint to help evaluate machine learning-based medical tests in cardiac electrophysiology and beyond.

摘要

机器学习方法在心血管研究中的应用越来越广泛。为了突出评估应用机器学习的研究的机遇和挑战,我们以心脏电生理学为例,该领域的特点是数据量大且往往不均衡。我们为评估和展示监督式机器学习研究提供建议和指导。我们建议选择合适的队列,严格将训练数据和测试数据分开,并将结果与无机器学习的参考模型进行比较,作为确保使用机器学习方法的研究质量的基本原则。此外,我们建议在报告机器学习时使用特定的指标和图表,包括多通道时间序列或图像的模型。本最佳实践文件代表了一个可能的蓝图,有助于评估心脏电生理学及其他领域基于机器学习的医学测试。

相似文献

1
Evaluating artificial intelligence-enabled medical tests in cardiology: Best practice.
Int J Cardiol Heart Vasc. 2025 Aug 30;60:101783. doi: 10.1016/j.ijcha.2025.101783. eCollection 2025 Oct.
3
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
4
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
7
Machine Learning, Deep Learning, Artificial Intelligence and Aesthetic Plastic Surgery: A Qualitative Systematic Review.
Aesthetic Plast Surg. 2025 Jan;49(1):389-399. doi: 10.1007/s00266-024-04421-3. Epub 2024 Oct 9.
8
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
9
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.

本文引用的文献

2
3
AI hallucinations are a feature of LLM design, not a bug.
Nature. 2025 Mar;639(8053):38. doi: 10.1038/d41586-025-00662-7.
4
High precision ECG digitization using artificial intelligence.
J Electrocardiol. 2025 May-Jun;90:153900. doi: 10.1016/j.jelectrocard.2025.153900. Epub 2025 Feb 19.
5
AI hallucinations can't be stopped - but these techniques can limit their damage.
Nature. 2025 Jan;637(8047):778-780. doi: 10.1038/d41586-025-00068-5.
6
Raw photoplethysmogram waveforms versus peak-to-peak intervals for machine learning detection of atrial fibrillation: Does waveform matter?
Comput Methods Programs Biomed. 2025 Mar;260:108537. doi: 10.1016/j.cmpb.2024.108537. Epub 2024 Nov 28.
7
Design and validation of Withings ECG Software 2, a tiny neural network based algorithm for detection of atrial fibrillation.
Comput Biol Med. 2025 Feb;185:109407. doi: 10.1016/j.compbiomed.2024.109407. Epub 2024 Dec 5.
8
Evaluating gradient-based explanation methods for neural network ECG analysis using heatmaps.
J Am Med Inform Assoc. 2025 Jan 1;32(1):79-88. doi: 10.1093/jamia/ocae280.
9
FDA Perspective on the Regulation of Artificial Intelligence in Health Care and Biomedicine.
JAMA. 2025 Jan 21;333(3):241-247. doi: 10.1001/jama.2024.21451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验