Suppr超能文献

贝叶斯大脑理论:信念的计算神经科学。

Bayesian brain theory: Computational neuroscience of belief.

作者信息

Bottemanne Hugo

机构信息

MOODS Team, INSERM 1018, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Université Paris-Saclay, Faculté de Médecine Paris-Saclay, Kremlin Bicêtre, France; Department of Psychiatry, Bicêtre Hospital, Mood Center Paris Saclay, DMU Neurosciences, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris (AP-HP), Kremlin-Bicêtre, France; Institut du Cerveau - Paris Brain Institute, Institut National de la Santé et de la Recherche Médicale (INSERM U1127), Paris, France.

出版信息

Neuroscience. 2025 Feb 6;566:198-204. doi: 10.1016/j.neuroscience.2024.12.003. Epub 2024 Dec 4.

Abstract

Bayesian brain theory, a computational framework grounded in the principles of Predictive Processing (PP), proposes a mechanistic account of how beliefs are formed and updated. This theory assumes that the brain encodes a generative model of its environment, made up of probabilistic beliefs organized in networks, from which it generates predictions about future sensory inputs. The difference between predictions and sensory signals produces prediction errors, which are used to update belief networks. In this article, we introduce the fundamental principles of Bayesian brain theory, and show how the brain dynamics of prediction are associated with the generation and evolution of beliefs.

摘要

贝叶斯大脑理论是一个基于预测处理(PP)原则的计算框架,它提出了一种关于信念如何形成和更新的机制性解释。该理论假设大脑对其环境进行编码,形成一个由网络中组织的概率性信念组成的生成模型,并据此对未来的感官输入进行预测。预测与感官信号之间的差异产生预测误差,这些误差被用于更新信念网络。在本文中,我们介绍了贝叶斯大脑理论的基本原理,并展示了预测的大脑动态如何与信念的产生和演变相关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验