Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Department of Psychiatry, University of Cambridge, Cambridgeshire, UK.
Schizophr Bull. 2019 Sep 11;45(5):1092-1100. doi: 10.1093/schbul/sby154.
Psychotic experiences may be understood as altered information processing due to aberrant neural computations. A prominent example of such neural computations is the computation of prediction errors (PEs), which signal the difference between expected and experienced events. Among other areas showing PE coding, hippocampal-prefrontal-striatal neurocircuits play a prominent role in information processing. Dysregulation of dopaminergic signaling, often secondary to psychosocial stress, is thought to interfere with the processing of biologically important events (such as reward prediction errors) and result in the aberrant attribution of salience to irrelevant sensory stimuli and internal representations. Bayesian hierarchical predictive coding offers a promising framework for the identification of dysfunctional neurocomputational processes and the development of a mechanistic understanding of psychotic experience. According to this framework, mismatches between prior beliefs encoded at higher levels of the cortical hierarchy and lower-level (sensory) information can also be thought of as PEs, with important consequences for belief updating. Low levels of precision in the representation of prior beliefs relative to sensory data, as well as dysfunctional interactions between prior beliefs and sensory data in an ever-changing environment, have been suggested as a general mechanism underlying psychotic experiences. Translating the promise of the Bayesian hierarchical predictive coding into patient benefit will come from integrating this framework with existing knowledge of the etiology and pathophysiology of psychosis, especially regarding hippocampal-prefrontal-striatal network function and neural mechanisms of information processing and belief updating.
精神体验可以被理解为由于异常的神经计算而导致的信息处理改变。这种神经计算的一个突出例子是预测误差(PE)的计算,它表示期望事件和经历事件之间的差异。在表现出 PE 编码的其他区域中,海马体-前额叶-纹状体神经回路在信息处理中起着突出的作用。多巴胺能信号的失调,通常是由于心理社会压力引起的,被认为干扰了对生物重要事件(如奖励预测误差)的处理,并导致对不相关感觉刺激和内部表象的异常显著归因。贝叶斯分层预测编码为识别功能失调的神经计算过程和对精神体验的机械理解提供了一个有前途的框架。根据这个框架,在皮质层次结构的较高层次编码的先验信念与较低层次(感觉)信息之间的不匹配也可以被视为 PE,这对信念更新有重要影响。相对于感觉数据,先验信念的表示精度较低,以及在先验信念和感觉数据之间的功能失调相互作用在不断变化的环境中,被认为是精神体验的一般机制。将贝叶斯分层预测编码的承诺转化为患者的获益,将来自于将这个框架与精神病的病因和病理生理学的现有知识相结合,特别是关于海马体-前额叶-纹状体网络功能和信息处理以及信念更新的神经机制。
Schizophr Bull. 2016-1
Biol Psychiatry. 2018-5-25
Schizophr Bull. 2019-10-24
Schizophr Bull. 2010-5-7
Rev Psiquiatr Salud Ment. 2012-7-3
Schizophr Bull. 2012-12-12
Psychol Med. 2009-2
Brain Commun. 2025-2-17
Commun Psychol. 2024-9-23
Front Nutr. 2024-9-4
Schizophr Bull Open. 2022-12-14
Cogn Affect Behav Neurosci. 2024-8
J Neurosci. 2018-4-30
Neuropsychopharmacology. 2018-1-30
Schizophr Res Cogn. 2015-4-7
Neuroimage. 2017-11-2
Schizophr Bull. 2017-7-1
Curr Opin Neurobiol. 2017-9-21
Neurosci Biobehav Rev. 2017-9-1