Suppr超能文献

目标导向决策作为概率推理:计算框架和潜在的神经关联。

Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates.

机构信息

Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08540, USA.

出版信息

Psychol Rev. 2012 Jan;119(1):120-54. doi: 10.1037/a0026435.

Abstract

Recent work has given rise to the view that reward-based decision making is governed by two key controllers: a habit system, which stores stimulus-response associations shaped by past reward, and a goal-oriented system that selects actions based on their anticipated outcomes. The current literature provides a rich body of computational theory addressing habit formation, centering on temporal-difference learning mechanisms. Less progress has been made toward formalizing the processes involved in goal-directed decision making. We draw on recent work in cognitive neuroscience, animal conditioning, cognitive and developmental psychology, and machine learning to outline a new theory of goal-directed decision making. Our basic proposal is that the brain, within an identifiable network of cortical and subcortical structures, implements a probabilistic generative model of reward, and that goal-directed decision making is effected through Bayesian inversion of this model. We present a set of simulations implementing the account, which address benchmark behavioral and neuroscientific findings, and give rise to a set of testable predictions. We also discuss the relationship between the proposed framework and other models of decision making, including recent models of perceptual choice, to which our theory bears a direct connection.

摘要

最近的研究提出了一种观点,即基于奖励的决策是由两个关键控制器来管理的:一个是习惯系统,它存储由过去奖励塑造的刺激-反应关联;另一个是目标导向系统,它根据预期结果选择行动。当前的文献提供了丰富的计算理论来解决习惯形成问题,这些理论主要集中在时间差分学习机制上。在形式化目标导向决策所涉及的过程方面,进展较少。我们借鉴认知神经科学、动物条件反射、认知和发展心理学以及机器学习方面的最新研究成果,概述了一种新的目标导向决策理论。我们的基本观点是,大脑在可识别的皮质和皮质下结构网络中,实现了一个奖励的概率生成模型,而目标导向决策是通过对该模型进行贝叶斯反演来实现的。我们提出了一组模拟实现该理论的方案,这些方案解决了基准行为和神经科学发现,并提出了一系列可测试的预测。我们还讨论了所提出的框架与其他决策模型之间的关系,包括最近的感知选择模型,我们的理论与这些模型直接相关。

相似文献

2
Learning, Reward, and Decision Making.学习、奖励与决策制定。
Annu Rev Psychol. 2017 Jan 3;68:73-100. doi: 10.1146/annurev-psych-010416-044216. Epub 2016 Sep 28.
4
Goal-Directed Decision Making with Spiking Neurons.基于脉冲神经元的目标导向决策
J Neurosci. 2016 Feb 3;36(5):1529-46. doi: 10.1523/JNEUROSCI.2854-15.2016.
6
Reward-modulated Hebbian learning of decision making.奖励调节的决策赫布学习。
Neural Comput. 2010 Jun;22(6):1399-444. doi: 10.1162/neco.2010.03-09-980.
7
Speed/accuracy trade-off between the habitual and the goal-directed processes.习惯与目标导向过程之间的速度/准确性权衡。
PLoS Comput Biol. 2011 May;7(5):e1002055. doi: 10.1371/journal.pcbi.1002055. Epub 2011 May 26.
9
Multiple memory systems as substrates for multiple decision systems.多种记忆系统作为多种决策系统的基础。
Neurobiol Learn Mem. 2015 Jan;117:4-13. doi: 10.1016/j.nlm.2014.04.014. Epub 2014 May 15.

引用本文的文献

1
Adaptive planning depth in human problem-solving.人类问题解决中的适应性规划深度。
R Soc Open Sci. 2025 Apr 9;12(4):241161. doi: 10.1098/rsos.241161. eCollection 2025 Apr.
6
The construction and use of cognitive maps in model-based control.基于模型控制中的认知图的构建与应用。
J Exp Psychol Gen. 2024 Feb;153(2):372-385. doi: 10.1037/xge0001491. Epub 2023 Dec 7.
7
Design Principles for Neurorobotics.神经机器人学的设计原则
Front Neurorobot. 2022 May 25;16:882518. doi: 10.3389/fnbot.2022.882518. eCollection 2022.
10
Cognitive Control as a Multivariate Optimization Problem.认知控制作为一个多元优化问题。
J Cogn Neurosci. 2022 Mar 5;34(4):569-591. doi: 10.1162/jocn_a_01822.

本文引用的文献

2
A Bayesian account of reconstructive memory.重构性记忆的贝叶斯解释。
Top Cogn Sci. 2009 Jan;1(1):189-202. doi: 10.1111/j.1756-8765.2008.01010.x.
6
A neural signature of hierarchical reinforcement learning.分层强化学习的神经特征。
Neuron. 2011 Jul 28;71(2):370-9. doi: 10.1016/j.neuron.2011.05.042.
8
Neurobiology of economic choice: a good-based model.经济选择的神经生物学:基于良好的模型。
Annu Rev Neurosci. 2011;34:333-59. doi: 10.1146/annurev-neuro-061010-113648.
10
Preference reversal in multiattribute choice.多属性选择中的偏好反转。
Psychol Rev. 2010 Oct;117(4):1275-93. doi: 10.1037/a0020580.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验