Wijesingha Manoj, Mo Yirong
Department of Nanoscience, Joint School of Nanoscience & Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
Chemphyschem. 2025 Mar 15;26(6):e202400908. doi: 10.1002/cphc.202400908. Epub 2024 Dec 16.
To mitigate the adverse effects of CO emissions, CO electroreduction to small organic products is a preferable solution and potential catalysts include the single-atom catalyst (SAC) which comprises individual atoms dispersed on 2D materials. Here, we used aluminium and phosphorus as the active sites for CO electroreductions by embedding them on the 2D graphitic carbon nitride (g-CN) nano-surface. The resulting M-CN (M=Al and P) SACs were computationally studied for the CO electroreduction using density functional theory (DFT) and ab-initio molecular dynamics (AIMD) simulations. Computations showed that CO can be adsorbed to the active sites in forms of a frustrated Lewis pair (Al/N or P/N) or single atom Al or P. The adsorbed CO can be converted to various intermediates by gaining proton and electron (H+e) pairs, a process simulated as electroreduction. While both SACs prefer to produce HCOOH with low potential determining steps (PDSs) and small overpotential values of 0.25 V and 0.08 V for Al-CN and P-CN respectively, to produce CH, P-CN exhibits a lower potential barrier of 0.9 eV than Al-CN (1.07~1.17 eV).
为了减轻一氧化碳排放的不利影响,将一氧化碳电还原为小分子有机产物是一种更好的解决方案,潜在的催化剂包括单原子催化剂(SAC),它由分散在二维材料上的单个原子组成。在这里,我们通过将铝和磷嵌入二维石墨相氮化碳(g-CN)纳米表面,将它们用作一氧化碳电还原的活性位点。使用密度泛函理论(DFT)和从头算分子动力学(AIMD)模拟对所得的M-CN(M = Al和P)单原子催化剂进行了一氧化碳电还原的计算研究。计算表明,一氧化碳可以以受挫路易斯对(Al/N或P/N)或单原子Al或P的形式吸附到活性位点上。吸附的一氧化碳可以通过获得质子和电子(H+e)对转化为各种中间体,这一过程模拟为电还原。虽然两种单原子催化剂都倾向于以低电位决定步骤(PDS)生成甲酸,且Al-CN和P-CN的过电位值分别为0.25 V和0.08 V,但对于生成CH,P-CN的势垒(0.9 eV)低于Al-CN(1.07~1.17 eV)。